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ABSTRACT    

Computational optimization and its integration with AI in formulation optimization, predictive modeling, and drug-

excipient interactions have significantly reduced the conventional trial-and-error approaches. This editorial 

highlights the integration of artificial intelligence (AI) in optimization and predictive analysis in formulation 

development and delivery. Some other advancements such as those emerging at the interface of human-AI 

interaction are also briefly discussed with a focus on advancements in the last five years. Extensive data from the 

characterization of early formulations like cocrystals, solid dispersions, and drug-excipient complexes have led to 

prediction tools with the help of supervised machine learning algorithms. Robotic innovations have led to the 

automation of manufacturing operations which are predictive, self-optimizing, and self-correcting. Ligand-receptor 

interactions are now analyzed and predicted more effectively with the help of AI algorithms bringing rationality to 

innovations in drug delivery. All forms of AI like machine learning and deep learning are contributing at each step 

of the pharmaceutical drug discovery and development pathway.  

 

Keywords: DoE, optimization, artificial intelligence, machine learning, preformulation, drug product, simulation, 

docking, pharmacokinetics. 

*Correspondence | Anupama Singh; School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, 

Dehradun 248001, India. Email: anupama.cognosy@gmail.com 
Citation | Singh A, Saharan VA, Hathout, 2025. Artificial Intelligence in Drug Formulation and Delivery: Benefits, Trends, and Future 

Perspectives. Arch Pharm Sci ASU 9(1): 209-222 

DOI: 10.21608/aps.2025.365472.1217 

Print ISSN: 2356-8380. Online ISSN: 2356-8399. 

Received 18 March 2025. Accepted 14 April 2025. 

Copyright: ©2025 Singh et al. This is an open-access article licensed under a Creative Commons Attribution 4.0 International License (CC BY 

4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. 

Published by: Ain Shams University, Faculty of Pharmacy 

 

1. Introduction 

The use of artificial intelligence (AI) in drug 

formulation, delivery, and targeting is gaining 

grounds every day. It includes the use of machine 

learning, design of experiments (DoE), molecular 

docking and simulations, and other beneficial 

software and informatics tools. DoE helps 

optimize processes and formulations by 

identifying relationships among various key 

factors and responses during drug product 

manufacturing, drug development, and discovery. 

Optimization increases the efficiency and 

robustness of the pharmaceutical process and 

improves the quality of drug products. However, 

the DoE approach becomes complex with the 

increase in the number of factors and when 

subjected to nonlinear relationships. Machine 

learning (ML) is particularly useful when 

analyzing datasets where the interactions between 
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multiple variables are intricate and are not well 

understood using conventional regression or rule-

based models. Moreover, ML is specifically 

useful when the experiments or runs are not 

planned and do not follow specific patterns. 

When dealing with complex relationships 

between multiple variables that do not follow a 

simple linear pattern, ML techniques are more 

effective in studying these relationships than the 

traditional DoE approach with statistical methods 

of optimization. Additionally, ML techniques are 

versatile in analyzing various forms of 

information, such as numerical data, images, and 

text. 

Therefore, examining diverse data types can 

be particularly utilized for almost any 

pharmaceutical process to predict the optimal 

formulation design, saving time, money, and 

resources. Supervised ML approaches are also 

helpful in predicting solubility, permeability, 

ADMET (Absorption-Distribution-Metabolism-

Excretion-Toxicity) properties, and ligand-

receptor interactions while unsupervised 

counterparts support clustering compounds, 

identifying formulation trends, and reducing 

feature dimensions. Post ChatGPT era, the DoE 

optimization software industry has actively 

integrated AI and ML to improve experimental 

design, analysis, and prediction. This integration 

has improved efficiency, reduced costs, and 

accelerated research and development across 

various sectors, including pharmaceuticals and 

materials science. 

The combination of molecular docking with 

MD (molecular dynamics) simulations or ML has 

enhanced the understanding of protein-ligand 

interactions, leading to more accurate predictions 

of binding affinities and the dynamic behavior of 

drug molecules within biological systems on one 

hand and the interaction of targeting moieties and 

piloting molecules grafted on nanocarriers to 

their targets on the other hand. Significant 

advancements in pharmacokinetic predictions 

through mechanistic modeling have led to new 

approaches to drug development like model-

informed drug development (MIDD)/model-

informed formulation development (MIFD). 

2. Benefits of machine learning methods in 

drug delivery 

Machine learning methods are an integral 

part of artificial intelligence that utilizes certain 

programs and software in performing specific 

tasks such as classification, clustering and 

regression, and predictions. They usually work 

by training the machines (computers) through 

datasets and by applying certain algorithms the 

required task(s) can be performed. According to 

the utilized algorithms, the machine learning 

methods are categorized into two main 

categories, namely; the unsupervised and the 

supervised counterparts. The term “supervised” 

implies that the inputs (x-variables) are 

supervised by the outputs (responses). In other 

words, it means that the method algorithm deals 

with the inputs and the outputs at the same time 

and correlates between them. On the other hand, 

the unsupervised methods only deal with the 

inputs or the x-variables with no correlation with 

the outputs [1]. Examples of supervised machine 

learning methods include Artificial Neural 

Networks (ANNs), Support Vector Machines 

(SVMs), Gaussian Processes (GPs),  and Partial 

Least Squares (PLS) while examples of un-

supervised ones are Principal Component 

Analysis (PCA) and Hierarchical Clustering 

Analysis (HCA) [2]. 

In the last recent years, the use of machine 

learning methods in drug delivery, 

pharmaceutics, and drug formulation has gained 

some solid ground. The applications of these 

methods are becoming crucial in pharmaceutical 

and similar industries such as cosmetics, food, 

and beverages. At the head of these applications 

comes the specification of the most successful 
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pairs between the drugs or molecules and their 

nanocarriers [3], pointing out the most successful 

formulations, detecting the most stable 

formulations, figuring out the absence or 

presence of drug-excipients incompatibilities and 

finally the successful prediction of drugs loading 

on their carriers. Examples of drug delivery 

applications using both supervised and 

unsupervised ML methods in literature will be 

provided in the upcoming subsections. 

2.1. The benefits of artificial neural networks 

in drug delivery 

Fig. 1. demonstrates the workflow of ANNs 

as a machine-learning method in drug loading 

prediction. The drugs or molecules are translated 

into numerical important molecular descriptors 

such as but not limited to: Xlog P, molecular 

weight, fragment complexity, number of H-bond 

acceptors, number of H-bond donors, molecular 

globularity, Weiner index and total polar surface 

area (tpsa). Then these descriptors are correlated 

with drug loading (DL) on a certain carrier as the 

response through ANNs so that a drug loading 

pattern is obtained so that when a new molecule 

is introduced, its drug loading can easily be 

predicted [2].  

 

 

Fig. 1. Workflow of ANNs as a machine learning method in drug loading prediction. Reprinted from Abd-algaleel et al., 2021 [4] 

under the terms and conditions of the Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

The artificial neural networks are inspired by 

the work of neurons in the neurological system 

where the concentration of the neurotransmitters 

that regulate the strength of the signal reaching 

the next neuron is replaced by a “weight” given 

for each input (in the above case it is one of the 

used descriptors). The network is usually built of 

neurons, hidden layers containing hidden nodes 

where the inputs are multiplied by varying 

weights aiming for an optimum correlation 

between the inputs and outputs. Usually, the 

summation of the products of inputs and their 

corresponding weights is subjected to an 

activation function (commonly a sigmoidal 

function) before correlation with the responses 

(outputs). The process aims to find a function that 

correlates the outputs with the inputs. Using a 

back-propagation method the weights are 

changed all over the neurons to reach the 

optimum model or function. After, this hidden 

model can be used to predict the outcomes of any 

newly entered inputs (regression and prediction) 

[5]. 

Some studies have utilized AI results and 

correlated them with practical drug delivery data 
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such as drug loading as an output [1, 6, 7]. 

2.2. The use of principal component analysis in 

realizing drug formulation stability 

The principal component analysis is another 

important machine learning method of the 

unsupervised category. It is a very useful method 

in reducing the dimensionality of the data and 

extracting the most important directions (vectors) 

causing the highest variation (variance) in the 

available data. It yields significant and beneficial 

plots called score or scattering plots where the 

points (data) are scattered according to the main 

directions (principal components) that are usually 

two (for simplification and readability) in most 

drug delivery applications. These plots are 

important in visualizing the gathering of points in 

close proximities usually in the same quadrant of 

the plot [8]. This clustering technique is now 

applied in determining the most stable 

formulations which is an indispensable criterion 

in selecting formulations to proceed for scaling 

up in the pharmaceutical industry [9]. An 

example of exploiting this method in the 

aforementioned application is demonstrated in 

Fig. 2a.  

 

Fig. 2. [a] PCA Bi-plots (scattering and loading plots together) and [b] HCA dendrograms of the microemulsions for two 

microemulsion systems: (i) Labrafil M1944 CS / Tween 80 / Labrasol / water and (ii) Capryol 90 / Transcutol P / Tween 80 / 

Labrasol / water. The codes 1 to 10 represent the 2 h after dilution formulations‟ measurements while the codes 11 to 20 represent 

the 24 h after dilution measurements for the same formulations. DS represents the droplet size while PDI stands for the 

polydispersity index. The yellow circles denote the most stable formulation in the first system while the green circles point out 

the most stable counterpart in the second system (Obtained from Nasser et al., 2024 [10] under the terms of the Creative 

Commons Attribution License(CC BY) license (https://creativecommons.org/licenses/by/4.0/)). 

2.3. The use of Hierarchical analysis in 

evaluating drug formulations stability 

Similarly, Agglomerative Hierarchical 

Clustering analysis (AHCA) is another clustering 

un-supervised method that generates 
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characteristic plots called dendrograms (which 

means “tree” in the Latin language) from which 

the clustering of similar formulations is easily 

visualized as leaves belonging to the same branch 

of the tree and proximal (with the shortest 

distance) to each other as demonstrated in Fig. 

2b. 

Accordingly, the microemulsion formulation 

F1 was proven to be the most stable as its scores 

were clustered according to its measurements 

after 2 h and 24 h dilution (represented by codes 

1 and 11) at the same branch of the dendrogram 

in the first system having a composition of 

Labrafil M1944 CS (5.67%), Labrasol (38.71%), 

Tween 80 (38.71%), and water (16.92%), while, 

in the second system the formulation F5 was 

selected as the most stable counterpart with a 

composition of Capryol 90 (0.50%), Transcutol P 

(26.67%), Tween 80 (26.67%), Labrasol 

(26.67%), water (19.50%) [10] after its scores 

were clustered according to its measurements at 

2h and 24 h dilution (denoted by the codes 5 and 

15) at the same branch of the dendrogram. 

2.4. Determining drug-excipients 

incompatibilities using principal component 

analysis 

In another context, the PCA technique can 

also be used in deciding drug-excipient 

interactions or incompatibilities after performing 

differential scanning calorimetry (DSC) 

experiments between the drug and the 

investigated excipient at different titrating ratios 

(Fig. 3) [11]. 

Clustering the drug score with the mixture 

scores that contain the drug in equal or higher 

ratios than the excipient (such as 1:1, 7:3, and 9:1 

in Fig. 3) indicates compatibility with the 

investigated excipient while the presence of the 

drug‟s score at long distances from these ratios 

indicate the presence of incompatibility. 

Accordingly, Theophylline (Th) was 

considered compatible with microcrystalline 

cellulose (MC) while incompatible with sorbitol 

(Sb). 

 

 

Fig. 3. PCA scatter plot for DSC data: [a] Theophylline (Th), Microcrystalline cellulose (MC) and their mixtures [b] 

Theophylline (Th), Sorbitol (Sb) and their mixtures at the ratios: 9:1, 7:3, 1:1, 3:7, 1:9 (Obtained from Khajavi, 2022 [11] after 

modification under the terms of the Creative Commons Attribution License (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/)). 
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3. DoE Software integration with AI/ML 

Software programs such as Minitab, JMP, 

Alchemite™ by Intellegens, Alchemy Cloud's 

DoE Software, MODDE
®
-Q by Sartorius, and 

Citrine Informatics' DoE Platform have been 

used to integrate AI and ML into DoE. These 

advancements have enabled users to build more 

efficient, predictive, and adaptive experimental 

designs in pharmaceutical formulation and 

process development.  

3.1. Adaptive experimental design 

Conventional experimental designing 

employs experiments spread to the design space 

while adaptive experimental design approaches 

utilize AI and ML algorithms to directly target 

optimum formulations. The training process 

develops the AI/ML model and the developed 

model is used to find experiments required based 

on the knowledge gained during training and the 

objectives of the optimization. Additionally, the 

developed model improves the AI/ML model 

itself. The virtuous cycle of collecting data, 

training the model, guiding new experiments, and 

running experiments repeats itself to improve the 

model. The AI model is continuously trained and 

improved as more data is collected with new 

experiments. This adaptive approach improves 

accuracy and reduces the number of experiments 

compared to conventional optimization. 

Intellegens' Alchemite™ uses machine learning 

to enable an adaptive approach to DoE, 

significantly reducing the number of experiments 

(Alchemite™ for DOE - Intellegens).  

3.2. Predictive design space metrics 

By leveraging AI, DoE software can predict 

the properties of materials or processes, guiding 

researchers toward the most promising 

experimental candidates. Supervised Learning 

approaches help predict properties of not only 

early formulations like solubility, permeability, 

and stability but are also helpful in silico 

estimations for drug-target interactions and 

ADMET properties of final dosage forms. Citrine 

Informatics utilizes its generative AI platform 

Citrine Virtual Lab to run thousands of 

experiments virtually to explore new 

formulations, new materials, and product design 

integration (https://citrine.io/why-citrine/).  

3.3. Bayesian optimization 

Machine learning-based optimization 

algorithms such as Bayesian optimization (BO) 

are more efficient than conventional Design of 

Experiments (DoE) methodologies 

(https://chemintelligence.com/ai-for formulation). 

BO as a screening tool is used for optimizing 

drug solubility, permeability, and stability in drug 

formulations in a minimum number of 

experiments. It is a sequential, probabilistic 

optimization method used for optimizing drug 

formulations and also for hyperparameter tuning 

in ML. It is particularly useful for black-box 

functions where the mathematical form is 

unknown but can be observed at certain points. 

With Bayesian optimization, one can start with as 

few as 2 experiments, and use the optimization 

algorithm to design the next experiments. 

Overall, fewer experiments are required than with 

the traditional machine learning approach, 

because the Bayesian optimization algorithm 

requests to perform the experiments that are most 

useful to improve the quality of the machine 
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learning model.  Bayesian optimization can be 

used to develop new formulations, replace raw 

materials in existing formulations, and assist in 

improving the stability of developed formulations 

(https://www.softlabsgroup.com/ai-solutions/ai-

formulation-development/). 

3.4. Automation and efficiency 

The integration of AI into DoE facilitates the 

automation of factors and also streamlines the 

experimental design making it more efficient to 

target objectives. Historical data of formulations 

enables learning of AI facilitating predictive 

analysis continuously. Furthermore, real-time 

analysis and continuous flow of new data allow 

refinement leading to more precise results. The 

overall advantage of implementing AI in DoE 

results in better decision-making.  

Alchemy Cloud's AI-guided DoE platform 

offers smarter and faster experimentation due to 

its capabilities like automating factor selection 

and utilizing predictive analytics for real-time 

data analysis (How to Implement AI-Guided 

Design of Experiments (DOE) in Your R&D 

Process). Integrating Automated Machine 

Learning (AutoML) in the R&D workflow 

simplifies the model training process, making it 

accessible to non-experts 

(https://www.alchemy.cloud/blog/leveraging-ai-

for-optimized-formulations-the-future-of-r-d). 

AutoML tools reduce complexity and training 

time by automatically selecting the best 

algorithms, adjusting parameters, and validating 

models. This allows R&D teams to utilize 

advanced ML models without the need for deep 

technical expertise in AI. 

3.5. Enhanced optimization algorithms 

(Metamodeling) 

Metamodeling involves the generation of 

models with the help of AI/ML. Herein, AI/ML 

techniques interpolate with neural networks 

empowering to run simulations faster, reduce 

development costs, and search for the most 

robust design configurations. Ansys‟ optiSLang 

is a process integration and design optimization 

software for automatically searching robust 

design configurations and guiding simulations. 

The metamodel of optimal prognosis (MOP) 

algorithm, automatic (AutoML) algorithm and 

signal MOP algorithm, adaptive metamodel of 

optimal prognosis (AMOP), in OptiSLang helps 

in finding the best metamodeling approach 

(Optimize Design and Simulation with AI/ML 

and Metamodeling).  

3.6. Evidence-based DoE approaches 

Recent advancements include the integration 

of evidence-based methodologies with DoE to 

analyze and optimize drug delivery systems more 

effectively. This new approach couples 

systematic review and meta-analysis followed by 

optimization in a structured manner to improve 

the design and performance of drug delivery 

systems (Fig. 4). This approach has been applied 

to develop a drug delivery system comprising of 

emulsion-derived poly lactic-co-glycolic acid-

vancomycin (PLGA-VAN) capsules for treating 

osteomyelitis induced by Staphylococcus aureus 

[12]. This flexible and versatile approach utilizes 

data from laboratory experiments or DoE 

techniques or their combination of data resources. 

The validated methodology gives optimal 

performance and outcomes are capable of 

supporting future studies while eliminating the 
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need for extensive experimental work. 

 

Fig. 4. Flowchart of the evidence-based DoE optimization approach. Reprinted from Namdar et al., 2024 [12] under the terms 

and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

4. Model-informed drug development 

(MIDD)/Model-informed formulation 

development (MIFD) 

Formulation development is a repetitive 

process that can benefit from the „predict, learn, 

confirm, and apply‟ framework. MIFD/MIDD 

employs predictive mechanistic physiologically-

based pharmacokinetic (PBPK) models 

describing the relationship between in vitro 

property of a drug product/formulation and its in 

vivo pharmacokinetics 

(https://www.certara.com.cn/app/uploads/2023/0

5/WP_Model-Informed-Formulation-

Development_Final-5-2-23.pdf). ACAT 

(Advanced Compartmental Absorption and 

Transit; within Gastroplus) and  ADAM 

(Advanced Dissolution, Absorption and 

Metabolism, within Simcyp
®
 population-based 

Simulator) help formulation development in 

predicting variability in biopharmaceutics and 

pharmacokinetics with changes in the 

formulation. PBPK modeling also helps in 

comparing the bioavailability/bioequivalence of 

two different formulations, developing generic 

drug products, waiving/reducing costly 

bioequivalence/bioavailability studies in 

humans/animals, reducing the number of pilot PK 

studies, and setting dissolution specifications for 

drug products. The latest version of Gastroplus 

9.9 is equipped with abilities to evaluate 

formulations for local gastrointestinal disease 

states. The ACAT model for oral drug absorption 
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has laid the foundation for developing 

mechanistic models for other routes of 

administration; viz ocular (OCAT™), oral cavity 

(OCCAT™), and dermal (TCAT™) 

(https://www.simulations-

plus.com/resource/simulations-plus-releases-

gastroplus-version-9-9/).  

5. AI-powered co-scientists and research 

assistants 

AI companies and research institutions have 

collaborated to develop AI Laboratory 

Assistants/Co-Scientists as productivity 

accelerators in planning experiments and 

predicting experimental outcomes, increasing the 

efficiency and accuracy of scientific research. So 

far, we have reached an extent where LLM 

(Large Language Models such as ChatGPT) 

generated research ideas and hypotheses are now 

competing with human scientists and performing 

well (https://www.nature.com/articles/d41586-

024-03070-5). DeepMind‟s AlphaProteo 

technology is capable of designing novel, high-

strength protein binders to serve as building 

blocks for biological and health 

research ([2409.08022] De novo design of high-

affinity protein binders with AlphaProteo). 

AlphaProteo can generate novel proteins for 

diverse target proteins, including VEGF-A, 

which is linked with diabetes and cancer.  

Currently, BioNTech is trying to build an "AI 

personalized immunotherapy platform." with 

InstaDeep capabilities for internalizing model 

training, building foundational models for 

therapeutics and vaccines (BioNtech, InstaDeep 

bet on genAI models to advance R&D, drug 

discovery, cancer treatment | Constellation 

Research Inc.).  

BioNTech‟s Laila is an AI agent specialized 

in biology, and there are three models with 

different parameters: 8B, 70B, and 405B (Google 

DeepMind and biotech company BioNTech are 

each developing 'AI lab assistants' - GIGAZINE). 

Laila can collaborate with human scientists to 

develop hypotheses, plan experiments, and call 

on specialized tools to analyze the results.  

6. Some AI-powered predictive formulation 

tools for early formulation designing 

Some new approaches include the use of 

AI/ML models trained on datasets containing the 

formulation compositions, physicochemical 

properties of drugs and polymers, molecular 

descriptors and processing parameters, and other 

attributes to generate predictive models for 

solubility, dissolution, stability, permeability, and 

ADMET 

(https://www.pharmtech.com/view/using-

advanced-algorithms-to-solve-formulation-

challenges).  

FormulationAI is a web-based platform 

(https://formulationai.computpharm.org) that 

hosts various web servers for AI-based in silico 

designing formulations of cyclodextrin, solid 

dispersion, nanocrystals, phospholipid complex, 

liposome, and self-emulsifying drug delivery 

systems [13]. Another web server, PharmDE 

(https://pharmde.computpharm.org), a rule-based 

expert system, helps in predicting the 

compatibility of drugs and excipients [14]. It 

performs structural similarity analysis on the 

structure of a drug and employs rule-based 

matching for predicting 

compatibility/incompatibility and formulation 

risk which is helpful in rational experiment 

design.  

AI-predicted co-formers produce good co-

crystals. mPredict™ Co-crystal Prediction 

Service by Merck is based on AI-based tool to 

identify the right co-former for APIs 

(https://www.merckgroup.com/en/research/scienc

e-space/envisioning-tomorrow/precision-

medicine/harnessing-ai-to-speed-up-drug-

formulation.html). This AI tool allows quick 
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prediction and right selection of soluble forms of 

API to accelerate the drug development 

process. Cocrystals may be screened with 

computational approaches like the COSMO-RS 

(COnductor-like Screening MOdel for Realistic 

Solvents) model. It utilizes statistical 

thermodynamics and quantum chemistry for 

describing solid-liquid and liquid-liquid phase 

equilibria and has been successfully applied to 

predict the vapor pressure, solubility, and 

partition coefficients [15]. The use of COSMO-

RS can assist in identifying conformers to form 

novel co-crystals to improve the solubility, 

stability, and bioavailability of active molecules 

[16].  

In-silico modeling allows the prediction of 

solubility enhancement techniques and 

formulation design of amorphous dispersions via 

customized predictions with the input of only 

molecular structure and physicochemical 

properties of the compound. Quadrant 

2™ platform (Thermo Fisher Scientific) 

technology assists in early formulation 

development in this manner 

(https://www.patheon.com/us/en/insights-

resources/blog/ai-driven-drug-development-for-

poor-soubility-and-bioavailability.html). This 

technology employs proprietary algorithms, 

quantitative structure-activity relationship 

(QSAR), quantum mechanics/molecular 

dynamics (QM/MD), models, and ADMET 

(absorption, distribution, metabolism, excretion, 

and toxicity) for generating customized 

predictions.  

7. 3D Printing: prediction, self-optimization, 

and automated formulation development 

ML is applicable at each step of the 

pharmaceutical 3DP (3D-printing) process, 

including novel formulation development, drug 

release profile prediction, non-destructive final 

product QC, and fully automated printing [17]. 

Generative adversarial networks (GANs) and 

Reinforcement learning (RL) are ML techniques 

that can be exploited for product design and self-

automation.  

M3DISEEN, an AI predicting tool developed 

by FabRx, utilizes ML for predicting FDM 

(Fused Deposition Modeling) printability and 

dissolution of drug-loaded filaments 

(https://m3diseen.com/home). Selecting drug, 

excipients and their proportions in the 

formulation would enable predicting in high 

accuracy the printability parameters such as 

mechanical characteristics, extrusion 

temperature, printing temperature, printability, 

and the dissolution profile. This tool utilizes a 

knowledge base of about 614 drug formulations 

and 145 excipients. On the other hand, another 

software M3DIMAKER Studio is a nonrestrictive 

software that comes with an M3DIMAKER 3D 

printer to toprint, slice, and control with real-time 

analysis of the 3D printed drug product 

(https://fabrx-ai.com/home).    

Reinforcement learning (RL), an ML 

technique that imitates human trial and error 

process of humans to achieve goals, can 

dynamically adjust 3D printing process 

parameters, adaptively learn for error correction, 

predict maintenance and prevent faults, and self-

optimize print paths and toolpaths [18]. 

Additionally, RL can also aid in autonomous 3D 

printing manufacturing by integrating with 

robotic arms, conveyor belts, and quality control 

systems. 

8. Integration of molecular docking and 

molecular dynamics Simulations 

Integrating molecular docking with 

molecular dynamics (MD) simulations is a 

potential approach to targeted drug delivery. 

Docking provides initial static binding poses of 

ligands, which can be further refined and 

validated using MD simulations to account for 

the dynamic nature of molecular interactions. 



Artificial Intelligence in Drug Formulation and Delivery 

 

219 

This integrated approach enhances the accuracy 

of binding affinity predictions and offers deeper 

insights into the stability and conformational 

changes of drug-receptor complexes. This 

integrated approach gives a rationale for 

designing drug delivery systems by 

understanding molecular interactions [1, 6, 19, 

20]. Simulations help in selecting excipients such 

as targeting moieties and optimizing formulations 

to increase drug stability and efficiency [21]. 

Such computational studies also reduce 

experimental costs as they can predict outcomes 

before experimental validation which saves time 

and resources [22].  

In one recent study, molecular docking was 

used to assess the binding affinity of polyherbal 

formulation's bioactive compounds, including 

quercetin, to the androgen receptor (AR: PDB-

5JJM) and PIK3R1 (PDB-4JPS), key prostate 

cancer targets, followed by Molecular Dynamics 

(MD) simulations to assess the stability of ligand-

target interactions in a physiological environment 

[23]. The binding free energy (ΔGbind) was 

calculated using the MM/GBSA method, 

providing insights into the strength and nature of 

these interactions. Additionally, a protein-protein 

interaction network from the STRING database 

highlighted the role of polyherbal formulations in 

prostate cancer treatment. The combined network 

pharmacology, molecular docking, and MD 

simulation approach ensured a comprehensive 

understanding of drug-target interactions, aiding 

in optimized formulation development and 

targeted drug delivery. 

9. Machine learning integration with 

molecular docking 

ML algorithms have been developed to 

analyze and optimize protein-ligand docking, 

helping in drug design and virtual screening. ML 

integration into molecular docking processes has 

significantly improved the accuracy of binding 

predictions by learning from large datasets [24].  

Supervised learning algorithms, which use 

labeled data (e.g., experimentally determined 

binding affinities) to learn structure-activity 

relationships, include Random Forest (RF) for 

docking scoring functions (e.g., RF-Score), 

Support Vector Machines (SVM) for binding 

affinity prediction from molecular descriptors, 

Gradient Boosting (e.g., XGBoost, LightGBM) 

for enhanced docking-based virtual screening, 

and Deep Neural Networks (DNNs) for capturing 

complex protein-ligand interactions, with 

examples like DeepDock, a deep learning-based 

docking scoring model [25, 26]. 

Deep learning models, like Convolutional 

Neural Networks (CNNs), Graph Neural 

Networks (GNNs), and Recurrent Neural 

Networks (RNNs), have been applied to predict 

protein-ligand binding affinity [27]. GNNs (e.g., 

PyTorch-Geometric (PyG), GraphNets) model 

molecules as graphs, with atoms as nodes and 

bonds as edges, enabling the learning of complex 

molecular interactions [28]. CNNs (e.g., 

DeepBind, AtomNet) analyze three-dimensional 

molecular structures, capturing spatial features 

critical for binding predictions. RNNs (e.g., 

ChemBERTa, MolBERT) process sequential 

molecular data, like SMILES representations, to 

understand the sequential dependencies within 

molecular structures [28]. 

Generative models, including Generative 

Adversarial Networks (GANs), Variational 

Autoencoders (VAEs), and Transformer-based 

models, are employed to design novel ligands 

with optimal docking properties by generating 

new molecular structures optimized for binding 

affinity [29].  

Conclusions and Future Prospective 

The emergence of AI has led to 

transformational changes in computational drug 

formulation and delivery. AI integration in 

software and cloud-based online SaaS (Software 
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as a Service) tools is advancing formulation 

optimization, data analysis, predictive analysis, 

and targeted drug delivery. New algorithms and 

neural networks are set to bring a renaissance by 

optimizing solubility, drug-excipient interactions, 

stability, bioavailability, and ADMET. Powered 

co-scientists and research assistants are aiding 

scientists in their experimental planning and their 

execution. MIDD/MIFD is heading towards 

digital twins integration in drug development 

allowing real-time monitoring of drug release 

kinetics and subsequently improving formulation 

accuracy. Quantum computing-based molecular 

simulations will enable accurate predictions of 

drug-excipient interactions in advanced drug 

delivery systems. Human-machine collaboration 

advancements are expected to bridge the gap 

between pharmaceutical scientists, data analysts, 

and regulators leading to fostering innovation. 

Computationally designed smart drug delivery 

systems like stimuli-responsive nanoparticles, 

liposomes, and hydrogels will enhance targeted 

drug release and tailor drug delivery systems 

according to patient-specific genomic and 

metabolic data, ensuring optimized therapeutic 

effects while significantly reducing costs, 

development time, and resources. 
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