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ABSTRACT    

Necroptosis is a regulated cell death technique that eliminates cancer cells that are resistant to apoptosis, without 

requiring caspase. Necroptosis is implicated in several physiological and pathological processes. Numerous inputs 

can initiate the process, which is regulated by pseudokinase mixed lineage kinase domain-like protein (MLKL) and 

the activation of receptor-interacting serine/threonine protein kinases 1 and 3 (RIPK1, RIPK3). The well-studied 

executor RIPK1 affects important cellular processes and acts as a critical crossroad for several biochemical 

pathways through its interactions with numerous proteins. Currently, it is thought that necroptosis acts as a backup 

plan if apoptosis fails. Necroptosis possesses antiviral, antibacterial, and anticancer effects by getting rid of germ-

filled or proliferating cells and promoting the development of a strong immune system. However, its potent anti-

inflammatory and cytotoxic effects on cells can also lead to severe tissue injury, chronic sickness, and even tumor 

development. Not much is known about its role in the formation of tumors. In this review, we highlight recent 

discoveries about the biological significance of necroptosis, its conflicting functions in cancer, and its capacity to 

control cell destiny. As a pharmacologically controlled process, targeting necroptosis might be a valuable 

therapeutic intervention technique in cancer treatment. 
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Introduction 

When cells are unable to sustain essential 

living processes, cell death results. Cell death is 

often divided into two categories: controlled cell 

death (RCD) and accidental cell death (ACD). 

While RCD entails a signaling cascade in which 

effector molecules are involved, ACD is an 

uncontrollable biological process. Among them, 

RCD is often referred to as physiologically 

induced programmed cell death (PCD) [1]. 

Different methods of cell death can be 

categorized based on their morphological 

appearances, immunological characteristics, or 

enzymatic criterion functions. Cells in organisms 

react to physiological or pathological 

stimuli by producing different types of cell 

death to preserve the living body's normal 

function as much as possible. Autophagy 

typically occurs before apoptosis and initiates it. 

Autophagy has the greatest survival advantage 

and will cause programmed cell necrosis if the 

apoptotic cells are not removed in a timely 

manner [2]. 
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It is now clear that to preserve cellular 

homeostasis; processes for regulated cell death 

are required. Cell homeostasis is maintained by 

the physiological processes of cell division, 

proliferation, and death [3]. The biological 

process of cell death, which is the end of cell life, 

is essential for preserving the structure and 

functionality of healthy tissues. Necrosis and 

apoptosis are well-established mechanisms of cell 

death that have been linked to cell death, 

according to prior studies [4-6]. Genomic 

instability and/or inflammation cause a multi-step 

process that turns a normal cell into a cancerous 

one. The changing cells must rewire their 

biological processes to bypass the body's 

defenses against the growth of tumors as cancer 

progresses. One of the processes in cell 

transformation that encourages the emergence 

and spread of cancer is the inhibition of apoptosis 

[7]. Apoptosis resistance is a major component 

that mostly contributes to chemotherapy failure 

during cancer treatment [8]. Due to the cancer 

cells' strong resistance to caspase-dependent 

apoptosis, it was found that a unique emerging 

pathway is triggered in them. This indicates an 

alternative means of cell death in these cells and, 

when utilized in cancer treatment, may improve 

antitumor immunity. Necroptosis was the name 

used to describe it [9]. 

Necroptosis was first proposed as a novel 

kind of programmed cell death in 2005 [10]. It 

may be identified by a phosphorylation signaling 

pathway that activates mixed lineage 

pseudokinase domain-like protein 

(MLKL/pMLKL) and is mediated by receptor-

interacting serine/threonine protein kinase 1/3 

(RIPK1/RIPK3). Death receptors cause RIPK1 

and RIPK3 to become activated. RIPK3 then 

promotes MLKL phosphorylation. As a result, 

the plasma membrane is disrupted, cellular 

contents and damage-associated molecular 

patterns (DAMPs) are released, and a variety of 

inflammatory and immunological responses are 

set off, ultimately resulting in cell death [11]. 

MLKL, which is represented by the human 

MLKL gene and features a protein kinase-like 

domain, is a member of the protein kinase 

superfamily [12] and triggers necroptosis after 

being phosphorylated by RIPK3. Subsequently, 

MLKL assembles into oligomers in the plasma 

membrane, where it utilizes its ability to preserve 

ionic homeostasis [13]. 

RIP3, a member of the receptor-interacting 

serine/threonine protein kinases (RIP) family, is 

unique from the others in the family because of 

its unique C-terminal domain. The encoded 

protein is found in the cytoplasm. It belongs to 

the tumor necrosis factor (TNF) receptor-I 

signaling complex. In some cell types, RIPK1 

engages RIPK3 to start the creation of complex 

IIb, also called the necrosome, to start 

necroptosis when Casp-8 activity is inhibited, and 

this causes MLKL activation [1, 14]. 

2. Mechanism of Necroptosis 

The necroptotic process is initiated by 

activation of certain cell surface death receptors 

(such as Fas cell surface death receptor (FasRs), 

Tumor necrosis factor receptor 1 (TNFR1), 

interferon (IFN) receptors, and Toll-like 

receptors (TLRs) as well as RNA- and DNA-

sensing molecules [15]. Three known methods 

activate RIPK3, which is required for the 

necroptotic process. First, TNFR1 ligation 

activates RIPK1, which subsequently attaches to 

RIPK3 via shared RIP homology interaction 

motifs (RHIM) between the two molecules. 

Similar to this, the contact between TLR-3 and 

TLR-4 draws the adapter, which possesses an 

RHIM that can attach to and activate RIPK3. 

Finally, Z-dsDNA/dsRNA-binding protein 1 

(ZBP1), a cytosolic nucleic acid sensor, also 

contains a RIPK3-activating RHIM [16]. The 

protein oligomerizes to create an active 
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"necrosome" complex when RIPK3 

phosphorylates MLKL, and this complex 

migrates to the plasma membrane. Cell death is 

the outcome of this process, which is 

characterized by the expansion of the cell, 

permeabilization of the plasma membrane, and 

loss of cellular and organelle integrity [17]. The 

leakage of potassium, chemokines, and cytokines 

into the circulation is the source of inflammation 

and immune responses [18, 19] as shown in Fig. 

1 which was done by Tiff software. 

 

 

Fig. 1. Necroptosis mechanism. Necroptosis is initiated when death receptors (TNFR, TLR, and IFNR) attach to their 

corresponding ligands (as shown). They encourage the formation of the RIPK1–RIPK3–MLKL signaling complex upon caspase-

8 or cIAP depletion, which phosphorylates MLKL (p-MLKL). When MLKL is phosphorylated, it translocates to the plasma 

membrane, where it causes damage to the membrane and opens macropores. MLKL holes ultimately cause necroptosis by 

permitting ion inflow, cell enlargement, membrane lysis, and the consequent uncontrollable release of intracellular materials. 

Potassium efflux can further activate NLRP3 through NEK7 as a result of membrane disruption, which increases the release of 

inflammatory mediators. 

Nec-1 and SMYD2 are examples of inhibitory factors of necroptosis that have been discovered in recent investigations. 

 Receptor-interacting serine/threonine-protein kinase 1,3 (RIPK1, RIPK3), Mixed lineage kinase domain-like 

(MLKL), Tumor necrosis factor (TNF), Tumor necrosis factor receptor 1(TNFR1), Interferon receptor 

(IFNR), Cellular inhibitor of apoptosis proteins (CIAPs), Necrostatin-1 (NEC1), a lysine methyltransferase 

(SMYD), Lipopolysaccharides (LPS), Toll-like receptor (TLR), Damage-associated molecular patterns 

(DAMPs), adaptor protein apoptosis-associated speck like proteins (ASC), Tumor necrosis factor α-induced 

protein 3 (A2O), NLR family pyrin domain containing 3 (NLRP3). 
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3. Necroptotic Mediators' Role in Cancer 

MLKL, RIPK1, and RIPK3 are expected to 

have a critical role in regulating necroptosis in 

cancer. Functional modifications in the 

necroptotic machinery can reduce the ability of 

cancer cells to die and impact the prognosis due 

to changed interactions between RIPKs and other 

proteins [38] as seen in (Table 1), key 

necroptotic members have been identified to be 

both elevated and downregulated in a range of 

cancer types. 

Table 1. Dysregulated necroptotic mediators in different types of cancer 

Model of cancer Malfunctioning Expression Types of sample References 

Colorectal RIPK3 downregulation Intestinal tissues [39] 

Breast RIPK3 and MLKL 

downregulation 

Human breast cancer 

cell lines 

[40, 41] 

Acute myeloid leukemia  RIPK3 downregulation Bone marrow 

samples 

[42] 

Gastric MLKL downregulation Human gastric cancer 

cell lines 

[43, 44] 

Cervical Squamous Cell 

Carcinoma 

MLKL downregulation Tumor and adjacent 

epithelial tissues 

[45, 46] 

Glioblastoma RIPK1 upregulation Human glioma cell 

line 

[47, 48] 

Liver RIPK1 downregulation Liver cancer cells [49] 

Head and Neck Squamous 

Cell Carcinoma 

RIPK1 downregulation Head and neck 

carcinoma tissues 

[50, 51] 

Lung RIPK1 upregulation Lung cancer cell line [52] 

Pancreatic adenocarcinoma early- 

Stage 

MLKL downregulation Human pancreatic 

cancer tissues 

[53] 

Pancreatic ductal adenocarcinoma RIPK1, RIPK3, and MLKL 

upregulation 

Cell lines [54, 55] 

Ovarian MLKL downregulation Cell lines [56] 

Melanoma RIPK3 downregulation Human tissues [57] 

 

Receptor-interacting serine/threonine protein kinase 1, 3 (RIPK1, RIPK3), Mixed lineage kinase domain-like protein (MLKL). 
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Necroptotic mediators RIPK1 (located on 

chromosome 6), MLKL (located on chromosome 

16), and RIPK3 (located on chromosome 14) are 

associated with cancer and have an effect on 

prognosis [58]. Given that the majority of cancer 

cells are known to express less RIPK3, RIPK3 

downregulation or deletion during 

carcinogenesis, together with necroptosis 

resistance, is linked to a poor prognosis [59]. 

This dysregulation may be caused by 

oncogenes such as Tyrosine-protein kinase 

receptor TYRO3 (AXL/TYRO3) and 

Serine/threonine-protein kinase B-raf (BRAF), 

which may control the methylation state of the 

promoter and one of RIPK3's transcription 

factors (Sp1) [60]. Chemotherapy sensitivity is 

increased when the RIPK3 promoter is 

hypomethylated, restoring the kinase to its native 

expression and improving anticancer treatment 

[61]. Interestingly, hypoxia lowers the levels of 

both RIPK1 and RIPK3 mRNA expression in 

several colon cancer cell lines, but not promoter 

methylation status, which is associated with a 

worse prognosis [62]. Moreover, RIPK3 is 

downregulated in colorectal, breast, AML, and 

melanoma cancers [63]. Breast cancer cells 

lacking MLKL and RIPK3 have been found to 

have reduced expression of genes related to 

interferon-α and interferon-γ responses; however, 

the precise mechanisms behind this association 

remain unclear [64]. RNA-sequence research 

using CD34+ bone marrow cells from patients 

with myelodysplastic syndromes or chronic 

myelomonocytic leukemia showed that 

overexpression of MLKL was correlated with the 

degree of anemia [65]. The increased expression 

of RIPK1 validates its role as an inflammatory 

mediator and categorizes it as a predictor of a 

lower overall survival, even if the precise 

mechanism is yet unclear [66]. AML patients 

with CD34+ leukemia cells have reduced RIPK3 

expression, but not RIPK1 expression, which 

leads to impaired apoptosis, necroptosis, and the 

NF-θB pathway [67]. In addition, a different 

study found that RIPK1/RIPK3 inhibition may be 

a helpful treatment for AML patients by reducing 

the leukemogenic potential of AML cells when 

combined with specific chimeric antigen receptor 

T cells (highly expressed Interferon-gamma 

(IFN-γ)) or other differentiation inducers [68]. 

When it comes to patients with gastric, ovarian, 

cervical squamous, and early-stage pancreatic 

adenocarcinomas, low MLKL expression is 

associated with tumor development and poorer 

survival [69]. The downregulated MLKL 

expression might hinder the necroptotic process, 

which would explain the biomarker's low 

prognostic usefulness in cancer patients [70]. 

However, human pancreatic ductal 

adenocarcinoma has high expression of MLKL, 

RIPK1, and RIPK3, which is associated with a 

potent chemokine manifestation that encourages 

tumor development [54]. 

4. Necroptosis's Dual Sides in Cancer 

More and more research has revealed the 

connection between necroptosis and cancer. 

Gaining further insight into necroptotic pathways 

might help create novel cancer management 

strategies. Cancer is characterized by its 

resistance to apoptosis, which is brought on by 

modifications in or deactivation of the caspase 

function [20]. This shows that necroptosis 

activation is a potential cancer treatment strategy 

for eliminating apoptosis-resistant cancer cells 

[21]. Necroptosis's role in cancer is well-

established, though, as it may function as a tumor 

suppressor as well as a promoter [22]. 

Because necroptosis can activate alternative 

pathways and cause inflammation under the same 

pathological conditions, complicating cell fate 

and the course of pathologies that lead to 

neurodegenerative diseases, inflammatory 

diseases, or cancer metastasis, necroptosis is a 

"double-edged sword" in cancer. On the one 

hand, its induction promotes the death of 
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abnormal cells, which improves prognosis [23]. 

Several hypotheses have been proposed to 

explain the dual role. The specific role of 

necroptosis in carcinogenesis cannot be 

determined since every kind of cancer has a 

different microenvironment and different 

mediators are involved [24]. On the other hand, 

hypoxia characteristic of solid tumors is an 

appropriate strategy used by cancer cells to 

withstand necroptosis [25]. In this approach, 

cancer cells may modify their metabolism, 

decreasing their susceptibility to necroptosis [8]. 

It is believed that the DAMPs associated with 

inflammation, at least in part, play an odd role in 

initiating the necroptotic cascade in 

carcinogenesis [26]. Tumor metastasis and 

malignant transformation are brought on by 

inflammation, which is brought on by the release 

of DAMP (High Mobility Group Box 1; 

HMGB1), cytokines (Interleukin-1; IL-1), 

adenosine triphosphate (ATP); reactive nitrogen 

intermediates (RNI); reactive oxygen species 

(ROS); and mitochondrial DNA into the 

environment in response to necroptotic stimuli. 

However, by producing DAMP, necroptotic cells 

may enhance tumor suppression and activate the 

immune system [2, 27].  

Necroptotic cells supply antigens to dendritic 

cells (DCs), which in turn excite cytotoxic T-

cells. 

(CD8+ T lymphocytes) via a procedure 

known as antigenic cross-priming. It has been 

shown that in addition to DAMP release, T cell 

activation requires RIPK1-mediated signaling 

and nuclear factor kappa light chain enhancer of 

activated B cells (NF-θB) triggered transcription 

to organize adaptive immunity. The release of 

DAMPs during necroptosis may be crucial to 

understanding the immune system's seemingly 

contradictory functions in immune surveillance 

and tumor promotion in cancer [28]. 

 Recent research indicates that RIPK1 may 

be a unique immunomodulatory target for the 

creation of innovative anticancer drugs. It has 

been shown that via changing tumor-associated 

macrophages, RIPK1 kinase activity inhibition 

enhances anticancer immunity [29]. Therefore, 

blocking RIPK1 kinase enhances the anticancer 

effect by opposing the immunosuppressive 

necroptotic tumor microenvironment [30]. 

RIPK3 is also necessary for the anti-tumor 

immune response. Previous studies have shown 

that RIPK3 is not involved in the activation of B 

cells, T cells, or macrophages[3, 4]; however, 

recent data suggests that RIPK3 regulates the 

activation of Natural Killer T cells (NKT), which 

sets off the immune response and induces the 

lysis of cancer cells [31, 32]. 

The two roles of necroptosis and the 

metastatic process have been connected. 

Metastasis, or the ability of cancer cells to move 

to other places in the body, is the primary cause 

of mortality for cancer patients [33]. 

Necrotization of metastatic cells is still in its 

early stages, which is triggered by many adverse 

circumstances, such as immune system 

activation, hypoxia, DNA mutations, and 

excessive production of reactive oxygen species 

(ROS) inside cells [5, 6]. Contradictory evidence, 

however, suggests that necroptosis acts as a 

trigger for metastasis [34]. The binding of death 

receptor 6 (DR6) on the surface of these cells to 

its ligand, amyloid precursor protein, is shown to 

enhance endothelial cell death and tumor cell 

extravasation [30]. Furthermore, RIPK1/RIPK3 

promotes the phosphorylation of heat shock 

protein 27 in lung endothelial cells with 

permeability factor treatment (VEGF-A, VEGF-

B, and basic fibroblast growth factor (FGF-b)), 

which facilitates the extravasation of tumor cells 

without necroptosis [35]. 

According to this evidence, necroptosis can 

have a controversial function in the growth of 
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malignancies. It will be interesting to develop 

new methods that might target necroptosis for 

cancer treatment while still making use of well-

established therapeutic approaches like 

immunotherapy, radiation therapy, or the delivery 

of chemotherapy medicines. In this case, RIPK1 

activity modulation may be a helpful therapeutic 

approach for state-of-the-art regimens [36]. 

RIPK1 inhibitors may be a useful alternative 

treatment option for people who do not react to 

anti-TNF therapy. Many broad-spectrum 

multitargeting tyrosine kinase inhibitors have 

been approved by the Food and Drug 

Administration (FDA) for treatment against solid 

and hematological cancers. Nowadays, phase I 

and II clinical studies are investigating a small 

number of drugs that have been found to directly 

target RIPK1 to cure degenerative and 

inflammatory diseases. In clinical trials, RIPK1 

inhibitors have not shown to be a successful 

cancer treatment. For the treatment of pancreatic 

cancer, only one RIPK1-targeting drug is 

presently being investigated in stages I and II 

studies [37]. Thus, it will be essential to keep 

studying the precise role of RIPK1 activity in 

cancer models to develop innovative therapies 

[30]. 

Conclusions and Future Perspectives 

A significant barrier to the therapeutic 

application of this phenomenon is that 

necroptosis is a rather conservative defense 

mechanism that can be evaded due to the 

adaptability of pathogens and tumor cells. The 

primary mechanisms of necroptosis under 

different clinical conditions remain unknown. 

Moreover, how cells assess cellular stress events 

to initiate cell death pathways and control the 

transition between different cell death modes 

remains unknown. Despite the fact that 

necroptosis has been extensively studied in both 

animal and cell models, further investigation is 

required to ascertain whether controlling 

necroptosis might have therapeutic benefits. 

Future research on necroptosis should include 

multidisciplinary techniques, such as the 

construction of artificial organoids that may 

closely resemble the complex structure of the 

human body. To sum up, the results that are now 

available suggest that treating necroptosis may 

offer promising therapeutic opportunities and 

emphasize the significance of considering all 

aspects of necroptosis's complexity when 

creating novel treatment approaches. 
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