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ABSTRACT    

The world is currently facing an increase in multi-drug resistance which is a serious threat to global health. Owing to 

this, and the scarcity of novel synthetic drugs on the market, the researchers are encouraged to find new means to 

combat the multi-drug resistance pathogens, directed towards utilizing natural bioactive products that have potent 

effectiveness and are harmless to humans. Microorganisms synthesize these compounds either alone or alongside 

plants. Endophytic bacteria colonize the inside tissues of the plant, with no disease symptoms appearing on plant 

tissues. The extensive colonization of endophytic bacteria inside plant tissues forms a barrier that prevents harmful 

pathogens from taking hold. This occurs by creating secondary metabolites that inhibit the growth of pathogenic 

organisms. In this regard, they have an essential role in plant defensive systems. Thus, the goal of this article is to 

provide a broad overview of novel bacterial endophytes-derived compounds that have antimicrobial, antibacterial, 

antifungal, antiviral, antioxidant, and anticancer activities, as well as to present their potential applications in the 

pharmaceutical, medicinal, agricultural, phytoremediation, and nanobiotechnology. 

 

Keywords: multi-drug resistance; endophytic bacteria; secondary metabolites; antimicrobial. 

*Correspondence | Ghadir S. El-Housseiny; Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 

11566, Egypt. Email: ghadir.elhossaieny@pharma.asu.edu.eg 

Citation | Isleem RS, Eid AM, Hassan S, Aboshanab KM, 2024 Endophytic bacteria as a source of novel bioactive compounds. Arch Pharm Sci 

ASU 8(2): 469-496 

DOI: 10.21608/aps.2024.322214.1197 

Print ISSN: 2356-8380. Online ISSN: 2356-8399. 

Received 19 September 2024. Accepted 08 October 2024. 

Copyright: ©2024 Isleem et al. This is an open-access article licensed under a Creative Commons Attribution 4.0 International License (CC BY 

4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. 

Published by: Ain Shams University, Faculty of Pharmacy 

 

1. Multi-drug resistance (MDR) 

Infectious illnesses are one of the most 

common prevalent reasons for morbidity and 

mortality among the global population, 

particularly in underdeveloped nations. Microbes 

are responsible for 25% of the world's 57 million 

annual fatalities, according to the World Health 

Organization (WHO); this figure is higher in 

underdeveloped countries [1]. Since the 1940s, 

antibiotics have been regularly utilized to cure 

bacterial diseases and to fight off infections in 

immunocompromised individuals, however, 

abuse or misuse of antibiotics causes the 

development of antibiotic-resistance or 

multidrug-resistance, which has serious 

consequences for global health [2]. Furthermore, 

as a result of modern lifestyle, human health 

deteriorates, with the presence of resistant 

bacteria and new versions of life-threatening 

viruses emerging with less control of existing 

drugs to combat disease development, treatment 

effectiveness is reduced, and morbidity and 

mortality rates are increased [3]. To combat the 

health impact of multi-drug resistance microbes, 

researchers and pharmaceutical companies have 
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been focusing on discovering and developing 

new antimicrobial agents from natural sources 

that are active, readily available, and low in cost 

[4].  

The rise of microorganisms resistant to 

current antimicrobial treatments is owing to 

bacterial species' ability to acquire and transfer 

genetic resistance to available antibacterial 

medications. For millions of years, microbes 

have continually interacted with their biological, 

chemical, and physical environments, and some 

can interact with other living beings, a 

phenomenon known as sociomicrobiology. As a 

result, microorganisms have developed powerful 

metabolic capabilities that improve the chances 

of survival against scientific approaches used to 

eliminate these organisms [5]. Furthermore, the 

development of multidrug resistance (MDR) may 

arise from inappropriate use of antibiotics, poor 

hygiene conditions, inadequate food handling 

practices, and a lack of infection prevention and 

control (IPC), all of which may contribute to the 

spread of MDR [6]. Individuals with severe 

burns, diabetes, organ transplant recipients, and 

immunocompromised patients are more 

susceptible to hospital-acquired infections, which 

in turn promotes the spread of (MDR). Moreover, 

the expansion of worldwide transport and trade 

leads to a greater possibility of MDR spreading 

all over the world [7]. 

New antibiotics are always necessary due to 

the rapid evolution of drug-resistant infections, 

the emergence of new diseases, the prevalence of 

naturally resistant bacteria, and the toxicity of 

some present drugs [1]. Natural products 

continue to be the most important resource for 

the discovery of novel effective therapeutic 

substances to solve the challenges of treating new 

strains of infectious diseases and controlling the 

spread of multidrug resistance. The identification 

of active new compounds to combat the 

emergence of resistant pathogens should be 

accelerated [1, 29]. 

2. Medicinal plants and their importance to 

human health 

The plant kingdom is a treasure home of 

potential drugs and nowadays, there has been 

increasing attention and awareness about the 

importance of medicinal plants. Medicinal plants 

refer to whole plants or plant parts that contain 

active ingredients or biologically active 

secondary metabolites. In ancient medicines, 

people utilized herbs and plants to cure a variety 

of illnesses, including gastrointestinal 

complaints, skin disorders, cardiovascular 

disease, hepatic disorders, respiratory disorders, 

and urinary issues [8]. According to the World 

Health Organization (WHO), medicinal plants 

are the best source for a wide range of 

medications [9], and approximately 80% of the 

global population relies on traditional plants as 

remedies for diseases with many advantages as 

the natural products are considered safer, 

efficient, rarely have side effects, less toxic, 

inexpensive, and easily accessible [4, 9, 12, 13]. 

Furthermore, the basic requirements for using 

medicinal plants in the synthesis process of 

medications do not necessitate significant quality 

control for efficacy and safety compared to other 

drugs [11].  

Plants and herbs are considered the chief 

source of natural products and metabolites 

(biologically active compounds) used in 

medicines [4], as a result of these compounds the 

medicinal plants are either harvested for 

immediate use as herbal or alternative therapies 

in the presence of multiple adverse effects and 

drug resistance [12] or consumed for 

experimental use. The technique of preparing 

medicinal plants for experimental reasons entails 

collecting the plants at the appropriate time, 

drying and sterilizing them thoroughly, and then 

grinding them. Then extraction, fractionation, 

and purification of the natural bioactive 
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compounds [12].  

Efforts to improve bioactive metabolite 

production have not yielded optimal results, 

necessitating the search for additional sources. 

Given the limitations of in vivo production and 

the need to preserve biodiversity, using a 

microbial source may be a more sustainable and 

cost-effective way to produce valuable 

metabolites, potentially lowering market prices. 

For this reason, the study of 

microbial endophytes in medicinal plants has 

gained popularity and recognition in recent years 

[14]. 

3. Natural compounds derived from plant 

sources  

Plants produce natural chemical substances 

known as phytochemicals. Phytochemical 

compounds are synthesized by primary and 

secondary metabolism [9]. The primary 

metabolites are substances responsible for growth 

and are crucial for plant survival such as sugars, 

proteins, nucleotides, chlorophyll, and fatty acids 

[15]. Secondary metabolites are natural bioactive 

compounds or phytochemicals derived from 

microbes and medicinal plants including 

alkaloids, steroids, phenol, flavonoids, lectin, and 

tannins [1], to perform vital functions for their 

host plants [15]. These compounds can be 

extracted and separated by using solvents and a 

standard extraction process [16]. Natural 

bioactive compounds have significantly impacted 

drug discovery, particularly for treating 

infectious disorders, cancer, cardiovascular 

disease, hyperlipidemia, and multiple sclerosis 

[19]. Many of these compounds are considered 

ingredients of antibiotics, analgesics, anti-cancer 

agents, laxatives, diuretics, antihypertensive, 

heart drugs, anti-lipidemic, ulcer treatments, 

contraceptives, etc. [10].  

The medicinal plant's quality is strongly 

affected by different environmental factors, such 

as temperature, soil condition, and moisture. 

Furthermore, it can be influenced by the 

connection between host plants and their unique 

microbes [17]. Medical plants face high demand 

for secondary metabolites, extinction threats to 

biodiversity, and commercial exploitation. 

Additionally, they require certain habitats for 

survival, which restricts their distribution [18]. 

The scientist discovered biotechnological 

approaches including tissue culture use and 

synthetic seed technology. These approaches 

have been used to reduce the overuse of 

medicinal plants, but these approaches can not 

produce high levels of bioactive compounds and 

need long growth periods [142]. So, researchers 

shift to an ideal substitute for medicinal plants, 

which depend on microorganisms (bacteria and 

fungi) that inhabit plants, as they have good 

handling features, short generation times, and 

high growth rates, resulting in high biomass 

production [20]. It is believed that most of these 

microorganisms synthesize some secondary 

metabolites similar to the host plant as they 

exchange fragments of their genomic DNA with 

that of their host plant [21]. 

A wide range of bacteria have interactions 

with different plant tissues. These include the 

bacteria that live outside and inside their host 

plants. The bacteria that live outside the host 

plant tissues are either epiphytic (those bacteria 

live on the surface of the plant leaves), or 

rhizospheric, those bacteria colonize plant roots 

within the soil. However, bacteria that reside and 

thrive inside their host plant are known as 

endophytic bacteria [22, 23]. 

4. Endophytes 

4.1. Definition of Endophytes 

The endophyte term was defined first in 1866 

by De Bary [4, 26, 27; 28]. They were initially 

described in the plant Lolium temulentum. The 

term endophytes, "endo" originates from the 
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Greek word "endon" referring to within, and 

"phyte" comes from the Greek word "phyton" 

which represents plant [26, 31]. The term 

―endophytes‖ includes all non-pathogenic 

microorganisms colonizing and growing intra-

and/or intercellularly in the tissues of healthy 

plants for a period of their life span without 

appearing external signs of infections or diseases 

on the plants in which they live [22, 24, 27, 32] 

and create a mutualistic relationship. Endophytes 

are considered rich sources of bioactive natural 

products [29, 33] such as alkaloids, flavonoids, 

phenols, steroids, terpenoids, benzopyranones, 

benzoquinones, and xanthones. They are 

considered highly potent producers of 

antibacterial, antifungal, antiviral, cytotoxic, and 

immunosuppressive agents [25].  

 Endophytes in a single plant may consist of 

multiple species rather than just one. This could 

describe the beneficial effect of endophytes due 

to the combination of their activities [37]. Several 

scientists considered that the majority of 

microorganisms that interact with plants play an 

essential role in plant health, survival, and 

development, but only a small percentage of 

bacteria inhabiting the plants become harmful 

depending on the host genotype and environment, 

and sometimes they are neutral [16].  

Nearly 300,000 plant species on the earth, are 

considered hosts for one or more types of 

endophytes [29, 22, 33] Various studies are 

focusing on the special colonization of 

endophytes in certain host plants, although it is 

estimated that there are around one million 

different endophyte species residing in plants. 

Only a few of them have been described [29], 

which means that the opportunity to discover new 

natural products from interesting endophytic 

microorganisms isolated from different plant 

species is great.  

4.2. The origin of the endophytes 

The origin of endophytes is not determined 

exactly due to the complicated relationship 

between endophytes and plants and different 

environmental effects. Two major opinions on 

this, the first one is that endophytes are derived 

from the mitochondria of the plant's cell so can 

get the same genetic background as the host 

plants [38]. The second opinion is based on that 

endophytes can penetrate the plant tissue from 

outside environments like the soil due to injuries 

and openings in the host plants [39] as 

endophytes originate from the phylloplane micro-

flora or rhizosphere bacteria which have a chance 

to penetrate and colonize root tissue [41], 

providing a way into the xylem (vascular tissue). 

After that, the microbes could transport and 

reside in the plant systemically. Once the 

microbes enter the plant, endophytic populations 

can grow in different parts of the host plant. 

Endophytic microorganisms include bacteria, 

fungi, or actinomycetes, and in this article, we 

emphasize endophytic bacteria. 

5. Endophytic bacteria 

5.1. Entry of endophytic bacteria 

The distribution and colonization of 

endophytic bacteria require the bacteria to enter 

the host plants in different ways. They can enter 

the plants through the root hairs or wounds 

caused by microbial phytopathogens [31, 32] and 

the cracks that form in the lateral root junction 

and spaces between epidermal cells [10]. The 

roots are considered the primary gateway 

entrance of microorganisms to their host plants. 

Alternatively, some bacterial endophytes can 

secret cellulolytic enzymes such as cellulases, 

pectinases, xylanases, and endoglucanases which 

modify the cell wall of the host plant and 

facilitate the entry and spread of bacteria within 

the host plant tissues [31, 36]. The bacterial 

endophytes could also penetrate host plants 

through different places such as stomata, 

particularly on leaves and young stems, and 
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lenticels, which are located in the periderm of 

stems and roots [41]. Furthermore, 

plants produce root exudate or attractive 

compounds (chemoattractants) 

that attract beneficial bacteria from the 

surrounding environment [27]. At the same time, 

endophytic bacteria recognize these compounds 

and show chemotactic movement toward them. 

Then, they can penetrate the plant through the 

root by using lateral root emergence or openings 

and wounds [36]. 

5.2. Route of transmission of bacterial 

endophytes 

Bacterial endophytes that inhabit inside plant 

tissue (intra- and/or intercellular) for a whole or a 

part of their life cycle can be transmitted from the 

parents to offspring or can be transmitted 

between two individual plants [23]. There are 

two different ways of transmission, horizontal 

and vertical, however, transmission can also be 

mixed (mixed–mode transmission) which 

involves both horizontal and vertical ways [24, 

42]. 

5.2.1. Horizontal transmission 

Horizontal transmission occurs between 

individual plants in a community or in the same 

environment. The reproduction process through 

sexual or asexual spores [43] leads to horizontal 

transmission, where endophytic bacteria may 

transfer between plants in a community or a 

population in the environment [23]. 

The majority of bacterial endophytes are 

horizontally transmitted as they are acquired 

from the surrounding environment [42]. Also, 

they can be transmitted through wounds and 

injuries of the root as well as the aerial parts of 

the plant [10, 40]. The beneficial properties of 

bacterial endophytes respond to changes in the 

environment, which depends on the soil type. The 

diversity of bacterial endophytes in the seeds of 

plants grown in the soil is higher than the 

diversity of bacterial endophytes in seeds grown 

under sterile conditions [42]. Soil is considered 

the main environmental factor impacting the 

diversity of bacterial endophytes, and pH is the 

most potential soil characteristic affecting the 

composition and structure of microorganism 

communities across different continents [44]. 

5.2.2. Vertical transmission 

The transmission of bacterial endophytes is 

vertically directed from the parent plants to the 

offspring [23] via seeds and pollen, so different 

types of bacteria have been detected in the seeds 

of the parent plants [24]. 

Endophytic bacterial distribution within plant 

tissue depends on the ability of bacterial 

endophytes to colonize and the allocation of plant 

resources. At the site of root injuries located 

below the root hair zone, the endophytic bacteria 

penetrate the epidermis and colonize there, grow, 

and become able to establish populations both 

inter- and intracellularly. After that, some 

bacterial endophytes can move systemically and 

enter the vascular tissue to reach other areas of 

the plants [22, 23].  

5.3. Distribution of endophytic bacteria 

Endophytic bacteria seem to be distributed 

and colonized in different plant tissues, including 

roots, stems, leaves, flowers, seeds, ovules, and 

fruits [45, 46]. They are typically found in 

intercellular, intracellular areas, and xylem 

vessels, where the bacteria are transported to 

aerial parts of plants such as fruits and flowers. 

However, plants often have more bacterial 

endophytes in their roots than in their above-

ground tissues.  

Endophytic microorganisms are discovered 

in different plant species ranging from 

herbaceous plants such as rice, garlic, onion, 

ferns, mosses, and tomatoes to woody trees such 

as ginkgo, oak, etc. [43]. A single plant species 
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may host diverse endophytic microorganisms 

[32, 40]. The classical approaches for studying 

microbial endophytes involve the isolation of 

endophytes from different plant parts, followed 

by phenotypic and genetic characterization of the 

isolates [40]. The variety of new endophytic 

species that may exist in numerous plants proves 

that endophytic microorganisms are significant 

components of microbial biodiversity [43], and 

several studies have shown that there are few 

bacterial endophyte-free plants. 

Recently, the study of endophytic bacteria 

has increased, as they play a serious role in 

agriculture by enhancing crop productivity; 

however, the major orientation now is to 

explore endophytic bacteria because they can 

produce valuable natural compounds with high 

efficacy, which can be used in the pharmaceutical 

and medicinal industries [46].  

The way of production of bioactive 

compounds by the endophytic bacteria is related 

to the genetic evolution of these microorganisms, 

while the genetic information incorporated with 

the host plants [43], allows for better adaptation 

with the host plants and carries some prevention 

mechanisms against insects and pathogens [33]. 

So various types of bioactive metabolites are 

produced not only by endophytes but also can be 

produced by the host plant and associated 

endophytes together [26, 69]. For example, 

bacterial endophytes isolated from medicinal 

plants of Solanum distichum, Calendula 

officinalis, Matricaria chamomilla, and 

Hypericum perforatum showed sufficient 

antibacterial and antifungal activity [47, 48]. 

When the natural bioactive compound 

synthesized by endophytic microorganisms is the 

same produced by the host plant, this is supposed 

to be more beneficial for the environment by 

minimizing the need to harvest slow-growing and 

rare plants, and thus preserve the world’s 

biodiversity. Also, this helps to get the natural 

bioactive compounds from microbial sources 

more easily and economically [29]. 

Endophytic bacteria can synthesize 

extracellular enzymes such as pectinase, amylase, 

lipase, cellulase, and protease. These 

extracellular enzymes act as a defense 

mechanism against disease and help to obtain 

food from the host plants [26]. 

Methods to obtain bioactive molecules 

synthesized by endophytes depend on the 

extraction process. The process starts with the 

isolation of endophytic microorganisms, followed 

by the production of endophytes through 

fermentation or microbial transformation [29]. 

More background information about the host 

plant species and microbial endophytes speeds up 

the research about natural bioactive metabolites 

[29].  

5.4. Diversity of endophytic bacteria 

 Endophytic bacteria are diverse, they belong 

to 16 phyla consisting of more than 200 genera of 

endophytic bacteria. However, a greater number 

of them belong to three phyla: Actinobacteria, 

Proteobacteria, and Firmicutes [36, 45]. The 

diversity ranges from Gram-positive bacteria to 

Gram-negative bacteria, such as Bacillus, 

Acinetobacter, Pseudomonas, Microbacterium, 

Achromobacter, Agrobacterium, Brevibacterium, 

Xanthomonas, etc [16].  Endophytic bacteria 

were detected in various environments which 

include aquatic, temperate, tropic, deserts, 

xerophytic,  Antarctic, rainforests, and coastal 

forests [10]. Endophytic bacteria have been 

detected in herbaceous plants such as aquatic 

weeds, noxious weeds, woody plants, 

reproductive structures of plants such as seeds 

and fruits, and perennial and annual grasses [57].  

5.4.1. Factors affecting the diversity of 

endophytic bacteria 

The diversity of bacterial endophytes is 

strongly affected by host plant characteristics as 
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well as biotic and abiotic environmental factors. 

The age, health, and growth stage of the host 

plant all have an impact on the diversity of endop

hytic bacteria. The host plant growth stages 

that are rich in nutritional resources are vulnerabl

e to increased bacterial diversity [58]. The plant's 

surface structure and root architecture, as well as 

root exudate, all influence bacterial selectivity 

and the bacterial spectrum present in plant 

tissues.  

 Environmental factors such as soil 

management, geographic location, and climate 

changes have roles in determining the species of 

bacterial endophytes [16, 17, 22, 44]. For 

example, oxygen content in the environment 

critically influences bacterial endophyte 

diversity, especially aerobic bacterial species that 

require oxygen for survival and growth [60]. The 

variation in nitrogen fertilization, and elevated 

levels of CO2, tend to have more bacterial 

diversity [22]. Moreover, Surette et al. [61] 

suggested that the abundance of bacterial 

endophytes in plant tissues may be associated 

with higher sugar content. 

The nature of host plant species significantly 

impacts the type of bacterial endophyte 

community [17]. Varied species of plants 

growing in the same soil may yield diverse 

endophytic varieties. Germida et al. [62] found 

that canola and wheat plants growing in the same 

region had distinct bacterial endophytic species. 

This finding was validated by Ding et al. [63] 

who found that the host plant species was the 

most significant aspect in determining its 

bacterial endophytes community, next to the 

sampling location.  

6. Technique used in studying endophytic 

bacteria 

Two major techniques are used to investigate 

the occurrence of endophytic bacteria in plant 

tissues: the culture-dependent method (direct 

observation technique) and the culture-

independent method. 

6.1. Culture-dependent method 

Most studies were carried out by culture-

dependent method, which needs the isolation of 

bacterial endophytes from different parts of the 

plant which can performed by surface 

sterilization technique to confirm the killing of 

any other organisms, followed by culturing the 

plant tissue fragments, or ground tissue extract 

[51] on suitable media. The surface sterilization 

process is a mandatory and crucial step; it should 

be sensitive enough to preserve endophytic 

bacteria but at the same time should be strong 

enough to kill epiphytes from the plant surface 

[28]. In the culture-dependent method, the 

microscope is used to determine the 

morphological character of the organism. 

Isolating the microbial endophytes and culturing 

them in a laboratory is important for endophyte 

characterization, studying the endophyte's 

microbial communities and diversity, and 

identification of secondary metabolites produced 

by endophytic bacteria [52].  

6.2. Culture-independent method 

In the culture-independent method, DNA 

fingerprinting and sequencing methods are used 

to determine the molecular character of the 

organism. This method is utilized when 

endophytic bacteria do not need to be cultivated; 

thus, this methodology is based on sequence 

analysis of bacterial genes resulting from DNA 

extracted from plant tissues [51]. A new 

molecular approach uses specific primers to 

characterize the specific genus and species of 

bacteria. This method relies on the amplification 

of the 16S ribosomal gene through the 

Polymerase Chain Reaction method (PCR) and 

aligning them with available databases which 

enables speedy and precise species identification 

of genetic material of the isolated bacteria [55]. 
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Culture-dependent and culture-independent 

approaches yielded similar microorganisms, with 

no significant differences [53].  

7. Classification of bacterial endophytes: 

The classification of bacterial endophytes 

usually depends on their life strategies, including 

obligate, facultative, opportunistic, and passenger 

or passive endophytes. 

Obligate endophytic bacteria are transmitted 

vertically via seeds to the host plant to complete 

their life cycle, while facultative which have a 

free-living phase of life in the soil as rhizosphere 

then enter the plants through emerging root hairs 

and root cracks or wounds [36]. Obligate 

bacterial endophytes are strongly dependent on 

their host plant for their growth, in contrast, 

facultative bacterial endophytes alternate 

between the soil and the host plant [10]. Others 

are opportunistic endophytes, which grow as 

epiphytic but occasionally enter the plant, and 

passenger or passive endophytes, which enter the 

host plant without actively seeking to colonize it 

[30]. 

Other criteria for classifying endophytic 

bacteria are based on their diversity, taxonomy, 

transmission mode, and biology, which 

categorizes the endophytic bacteria into systemic 

bacterial endophytes (true) and non-systemic 

bacteria endophytes (transient). 

Systemic bacterial endophytes are non-

pathogenic microorganisms that have a symbiotic 

relationship with the plant [64]. However, these 

endophytes are not influenced by changing 

environmental conditions. In contrast, non-

systemic endophyte diversity is influenced by 

changing environmental conditions [65], and has 

a pathogenic effect on their host plant in stressful 

and deficit resource conditions. 

8. Relationship between endophytic bacteria 

and host plants 

The relationship between endophytes and 

host plants is characterized by symbiotic 

interactions, as both endophytes and host plants 

benefit from association [17, 32]. The plants 

supply the endophytes with nutrients, and the 

endophytes support the plants to settle in 

ecosystem restoration processes [34], promoting 

the growth of the plants [96] directly by the 

production of secondary metabolites, which 

increase the ability of host plants to resist against 

biotic and abiotic stress such as osmotic stress, 

presence of heavy metals and xenobiotic 

compounds [22, 32]. Moreover, endophytes 

enhance root development by increasing nitrate 

uptake or solubilizing phosphorus and controlling 

soil-borne pathogens [34]. Furthermore, 

endophytic bacteria help the plants to adapt to 

their living environment [44], and enhance 

tolerance to stressful factors such as high salinity 

in the soil, low temperature, low pH, and the 

presence of heavy metals [43]. In addition, the 

endophytic bacteria produce secondary bioactive 

metabolites that can inhibit the disease 

development of the host plants and fight the 

pathogens [13] and herbivores [43], making them 

eligible for use in the pharmaceutical industry to 

control the growth of many pathogenic 

microorganisms [67]. Endophytes are one of the 

crucial organisms that develop beneficial 

associations with their host plants to thrive in the 

natural environments in the ecosystem and to 

tolerate multiple biotic and abiotic stresses that 

hamper the growth of the plants [22]. Endophyte-

plant interaction involves a process of co-

evolution controlled by colonization [14] which 

is managed by genes of the organism [11], 

growth stage, type of plant tissue, physiological 

status, agricultural practices, and environmental 

conditions such as nutrients, temperature, and 

water supply [32].  

Most of the modern research demonstrates 

that the health and survival of plants are very 

much dependent on these microorganisms [27], 
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so, in general, the endophytes-free plants are less 

healthy than the endophytes-infected plants [43] 

and the chance of endophytes-free plants to 

survive under natural conditions is low [41, 30]. 

This may be because the endophytes help the 

host plants to absorb the beneficial nutrients from 

the surrounding environment like nitrogen and 

phosphorus, [17] and or maybe because the 

endophytes produce phytohormones such as 

cytokines, indole-3-acetic acid (IAA), and 

vitamins which promote the growth of the plants 

[17, 31, 36, 43]. 

In addition, endophytic bacteria 

demonstrated great antibacterial activity against 

many plant pathogens such as Bacillus sp., 

Paenibacillus polymyxa, and Pseudomonas poae 

[66]. Burkholderia glumae and Xanthomonas 

oryzae [66]. Endophytic bacteria colonize an 

ecological niche similar to that of 

phytopathogens that invade the plants, thus 

allowing them to be suitable biocontrol agents 

[68]. For this reason, numerous researches have 

shown that endophytic bacteria can control plant 

pathogens. In addition, bacterial endophytes can 

also speed up seedling emergence, enhancing 

plant establishment and growth under adverse 

conditions. Due to the great biological properties 

of bioactive metabolites produced by endophytes, 

the interest of researchers in studying these 

metabolites increased. According to 

Stelmasiewicz et al., [69] there was a significant 

increase in the number of articles published on 

endophytes and their bioactive substances 

between 2000 and 2022.  

9. Application of Endophytic bacteria 

Bioactive compounds synthesized by 

endophytic bacteria have wide applications in 

pharmaceutical, medical, environmental, 

agricultural, and nanobiotechnology. 

 9.1. Pharmaceutical and Medical Applications 

Endophytes colonizing medicinal plants are 

known as a good source of bioactive compounds 

such as alkaloids, peptides, terpenoids, 

antibiotics, flavonoids, quinones, and phenols 

[39]. Fig. 1 and Table 1, summarize examples of 

bioactive compounds produced by endophytic 

bacteria and their biological activities. 

 

 

Fig. 1. Examples of bioactive compounds produced by endophytic bacteria 
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Table 1. Example of bioactive compound produced by endophytic bacteria and their therapeutic applications 

Endophytic bacteria Host plant Active component  Therapeutic application References 

P. aeruginosa CP43328.1  Anredera cordifolia CIX1  dioctyl phthalate (50.51%) 

and [1, 2, 4] oxadiazole, 5-

benzyl-3 (10.44%) 

antibacterial and antioxidant [49] 

Pseudomonas aeruginosa strain 

UICC B-40 

Neesia altissimo phenyltetradeca-2,5-

dienoate 

inhibitory activity on the 

growth of Gram-positive 

bacteria. 

[50] 

B. megaterium MTCC446 Phyllanthus 

amarus Schumach. and 

Thonn. 

Phenolic content antioxidant activity [35] 

Streptomyces sp. LJK109  Alpinia galangal root  3-methyl carbazole anti-inflammatory activity [56] 

Paenibacillus sp. IIRAC-30 Cassava Surfactin Antibacterial [106] 

Methylobacterium 

radiotolerans MAMP 4754 

Combretum erythrophyllum  9-octadecene, 3-eicosene, 

11-tricosene, hexadecane 

antibacterial and antioxidant [116] 

Micromonospora sp. PC1052 Puereria candollei S-adenosyl-N-

acetylhomocysteine 

Antioxidant, antibacterial [130] 

B. amyloliquefaciens sp. Ophiopogon japonicus exopolysaccharides  antitumor activity against the 

human gastric carcinoma cell 

lines MC-4 and SGC-7901  

[129] 

 

9.1.1. Antimicrobial agents from Endophytes 

Antimicrobial agents are the most bioactive 

natural compounds with low molecular weight 

made by endophytes and have activity at low 

concentrations against other organisms. 

Endophytic bacteria associated with medicinal 

plants are abundant sources of bioactive 

compounds with antimicrobial action.  These 

antimicrobial compounds belong to multiple 

structural classes such as steroids, phenols, 

alkaloids, peptides, flavonoids, and quinines [29], 

and used not only as drugs for the treatment of 

diseases but they can also be used as food 

preservatives in the food industry to prevent 

spoilage and food-borne diseases [6, 29]. 

Ecomycin is a potent antimicrobial 

compound, which is composed of some amino 

acids such as homoserine and β-hydroxy aspartic 

acid and has activity against human pathogens 

Candida albicans and Cryptococcus neoformans. 

According to Miller et al., [70] Ecomycin can be 

produced by the endophytic bacteria 

Pseudomonas viridiflava, which was isolated 

from some grass species. An endophytic bacteria 

Pseudomonas aeruginosa which lives within the 

tissue of Brassica oleracea (Cabbage), exhibits 

considerable antibiotic action against Escherichia 

coli, Staphylococcus aureus, Salmonella Typhi, 

and Klebsiella pneumoniae [71].  

A further study was performed on the 

antibacterial activity of a metabolic extract of 

endophytic bacteria isolated from the medicinal 

plant Andrographis paniculata [72]. Other 

research reported that Bacillus species 

endophytes including B. cereus, B. subtilis, B. 

licheniformis, B.circulans, and B. pumilus 

produced antimicrobial metabolites with high 

efficacy against different bacteria and fungi [73]. 

Another study focused on munumbicins 
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compounds, which were obtained from an 

endophytic bacteria Streptomyces NRRL 30562 

that was found in a medicinal plant, Snake Vine 

[Kennedia nigriscans]. The munumbicins A, B, 

C, and D, are newly described antibiotics that 

have potent activity against gram-positive 

bacteria such as Streptococcus pneumoniae, 

Bacillus anthracis, Staphylococcus aureus, and 

Enterococcus faecalis [74]. Moreover, the 

endophytic bacteria Bacillus megaterium, which 

was isolated from the roots of the medicinal plant 

Pongamia glabra, possesses great antifungal 

activity [75].  

9.1.2. Antioxidant agents from endophytes 

Antioxidants are substances that can prevent, 

inhibit, or significantly delay the oxidation of 

rapidly oxidizable materials at low concentrations 

[76]. The oxidation reactions involve the 

exchange of hydrogen or electrons between 

molecules and the oxidizing agent, forming free 

radicals. These free radicals can initiate chain 

reactions in a cell which harm or cause death in a 

cell. Oxygen-derived free radicals can also cause 

adverse consequences such as DNA damage, 

cellular degeneration, and carcinogenesis [77]. 

Antioxidants prevent chain reactions by 

eliminating free radicals and inhibiting other 

oxidative reactions. 

Natural antioxidant compounds commonly 

exist in medicinal plants, vegetables, and fruit 

including phenolics, tocopherols, carotenoids, 

flavonoids, tannins, lignins, and anthocyanins 

[78]. Plant-derived antioxidants aid in preventing 

degenerative disorders induced by oxidative 

stress, including cancer, atherosclerosis, 

Alzheimer's, and Parkinson's disease [79] 

Endophytes play a crucial role in the defense 

mechanism against infectious disease, as they 

produce a significant amount of antioxidant 

metabolites which inhibit the oxidative damage 

of human cells [25]. 

Endophytic bacteria are a potential source of 

natural antioxidant compounds [33]. Endophytic 

bacteria isolated from Papaya leaves were able to 

synthesize the same secondary metabolites of 

Papaya plants including alkaloids, flavonoids, 

tannin, saponin, and triterpenoids, which have 

high antioxidant activity and reduce free radicals 

[82]. Moreover, Sogandi et al., [80] reported that 

the endophytic Staphylococcus sp. isolated from 

clove (Syzygium aromaticum L.), produced 

alkaloids with high antioxidant activity.  

9.1.3. Anticancer agents from endophytes 

Cancer is a group of disorders where the 

aberrant cells proliferate and spread 

uncontrollably. There are over a hundred 

different forms of cancer. This illness occurs 

when aging cells cannot be substituted by new 

ones and aggregate in an accumulation of tissue 

called a tumor.  

The main issue with anticancer drugs is that 

they have nonspecific toxicity against normal 

cells, resulting in considerable side effects and 

limited efficacy against cancer cells. Therefore, 

careful medicine selection, combined with early 

diagnosis, improves the outcome of cancer 

treatment. 

One of the most important anticancer agents 

is Taxol which was initially isolated from trees 

related to the Taxus family (Taxus brevifolia) 

[84]. These trees are slow-growing, scarce, and 

produce low amounts of Taxol. These reasons 

limited the supply of this drug, and new sources 

for Taxol production were needed. Taxol 

production by the microbial fermentation of 

Taxomyces andreanae endophytes isolated from 

yew trees [85], offers an economical, and readily 

available alternative drug source. Bacillus 

safensis extracts obtained from sea sponges 

showed antitumor efficacy against hepatocellular 

carcinoma, breast carcinoma, colon carcinoma 

[86], and lung cancer [15]. The endophytic 
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bacteria Raoultella ornithinolytica produced an 

extract composed of a protein complex, which 

exhibited cytopathic, cytotoxic, and apoptotic 

effects on the human endometrioid ovarian 

cancer line, and the human breast 

adenocarcinoma line, leading to cell number 

reduction [87].  

9.2.  Agriculture application 

9.2.1. Plant Growth Promotion 

Most current research clearly shows that 

plant health and ability to survive are heavily 

reliant on microbial endophytes [11, 27], so 

endophyte-free plants are generally less healthy 

than endophyte-infected plants [43], and also 

have a low chance of survival under poor 

environmental conditions [41]. 

Plant-growth-promoting bacterial endophytes 

(PGPBEs) promote plant growth either directly, 

through phytohormone production, phosphate 

solubilization, nitrogen fixation [32], and 

inhibition of ethylene biosynthesis in response to 

biotic and abiotic stress (drought, salinity, flood, 

etc.), as well as enhance the nutrient's availability 

such as iron, phosphorus, nitrogen, and minor 

elements that are crucial for plant growth, or 

indirectly by increasing the resistance to 

pathogens and induce systemic resistance of 

plants [41, 46]. Fig. 2. shows direct and indirect 

mechanisms of plant growth promotion. Table 2. 

includes examples of different endophytic 

bacteria promoting plant growth through different 

mechanisms. 

Table 2. Examples of endophytic bacteria promoting plant growth through different mechanisms 

Endophytic bacteria Host plant Plant growth promotion 

mechanism 

References 

Bacillus subtilis and Paenibacillus sp. Tomato Antifungal [119] 

Bacillus sp., 

Pseudomonas sp., and Stenotrophomonas sp. 

rhizome of ginger Siderophore production [120] 

Stenotrophomonas maltophila, Pseudomonas 

geniculata, Bacillus amyloliquefaciens, 

Bacillus licheniformis, and Bacillus subtilis 

Tomato IAA production [117] 

Pseudomonas aeruginosa. chilli fruits IAA, ammonia, 

siderophore production 

and phosphorous 

Solubilization, and 

pathogen biocontrol 

activity 

 

[116] 

Acenitobacter calcoaceticus, Paenibacillus polymaxa, 

and Psuedomonas resinovorans 

G. procumbens leaves Cytokinin production [113] 

Actinobacteria, Bacteroidetes, Proteobacteria Suaeda maritima (L.) Dumort nitrogen-fixing [125] 

Bacillus Serratia 

 

tomato and chilli Antifungal activity, IAA, and 

Siderophore production 

[124] 

Enterobacter sp. Allium macrostemon Bunge Phytoremediation (remediate 

hydrocarbon-contaminated 

soils) 

[126] 

Acinetobacter sp. LSE06, Enterobacter 

aerogenes LRE17, Enterobacter sp. LSE04, and Serratia 

nematodiphila LRE07 

S. nigrum aminocyclopropane-1-

carboxylic acid deaminase, 

indole acetic acid, siderophores, 

and P solubilizing activity 

[127] 
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Fig. 2. Direct and indirect mechanisms of plant growth promotion 

9.2.2. Direct Mechanism 

9.2.2.1. Phytohormones production 

Phytohormones are organic substances or 

plant growth regulators, which enhance plant 

growth and development at low concentrations 

[32]. For agricultural purposes, phytohormones 

are chemically manufactured, extracted from 

plant sources, or generated through microbial 

fermentation. The main phytohormones 

synthesized by bacterial endophytes are auxins, 

gibberellins, cytokinins, ethylene, abscisic acid, 

strigolactones, brassinosteroids,  jasmonates, and 

indole-3- acetic acid (IAA). [41]. Indole-3- acetic 

acid (IAA) is widely recognized as an essential 

growth regulator molecule generated by 

endophytic bacteria, which play a role in 

increasing root surface area and providing soil 

nutrients to plants [31, 39]. It is capable of 

developing the gene regulation process as well as 

cell expansion, division, and differentiation [46]. 

Gibberellins regulate plant growth and 

development by delaying plant aging, increasing 

seed germination, and promoting stem, leaf, 

flower, and fruit growth and development [96]. 

Cytokinin regulates cell division and 

differentiation, stimulates axillary bud growth, 

and enhances resistance to biotic and abiotic 

stress [97]. Another phytohormone produced by 

endophytic bacteria is the 1-aminocyclopropane-

1-carboxylate (ACC) deaminase enzyme, which 

belongs to a group of auxins. This enzyme 

hydrolyzes ACC into α-ketobutyrate and 

ammonia. Lowering the level of ACC in soil 

results in the reduction of ethylene level [83], 

therefore enhancing plant growth by minimizing 

the abiotic stress caused by the imbalance in 

plant ethylene-level production. Elevated amount 

of ethylene levels inhibits DNA synthesis and 

cell division [32]. Moreover, the plant could use 

the ammonia and energy released during ACC 

breakdown for growth [98]. 
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9.2.2.2. Biofertilization 

9.2.2.2.1. Nitrogen fixation 

Biofertilization occurs due to nitrogen 

fixation, which involves the conversion of 

atmospheric nitrogen N2 into useful forms of 

nitrogen such as ammonia, ammonium, and 

nitrate [31], to enhance the biomass and length of 

host plants, especially in environments with high 

salinity. While chemical pesticides have been the 

objects of real criticism, especially due to their 

adverse effects on human health and the 

environment [83], the recognition and realization 

of the beneficial use of biological pesticides 

increased. 

9.2.2.2.2. Phosphate solubilization 

Phosphorous (P) is a vital element that helps 

in root development, glucose transport, and other 

physiological functions [91]. About 90-95% of 

soil phosphorus is present in precipitated or 

insoluble forms [92], making it difficult for 

plants to absorb. In this case, the phosphorus 

deficit can be balanced using organic or chemical 

phosphate fertilizers [93]. Bacterial endophytes 

boost phosphorus availability in plants by 

dissolving insoluble phosphate through 

acidification, ion exchange, chelation (i.e., 

PO4
3−

), and organic acid secretion, such as citric 

acid, glycolic, acetic, tartaric, malonic, or fumaric 

acid, or phosphate solubilizing enzymes such as 

phosphatase, C—P lyase, and phytase enzymes 

[103]. Furthermore, the secretion of 

exopolysaccharides by bacterial endophytes 

breaks down phosphate-containing substances 

[36]. 

9.2.2.2.3. Siderophore production 

The majority of soil iron is insoluble, which 

makes it difficult for plants to absorb. This results 

in an iron deficiency for plant uptake. Endophytic 

bacteria create a siderophore, which has a 

propensity for binding to iron and forming a 

siderophore -Fe
3+

 complex, making it available to 

plants [95]. 

 9.2.3. Indirect Mechanism 

9.2.3.1. Biocontrol 

Endophytes can prevent pathogen penetration 

into plants through both direct and indirect 

methods. The direct method explains a 

competition between phytopathogens and 

bacterial endophytes in which endophytic 

bacteria produce inhibitory molecules such as 

2,4-diacetyl phloroglucinol (DAPG), 

rhamnolipids, phenazine-1-carboxamide, 

viscosinamide, neomycin, pyroluteorine, 

pyrrolidine, neomycin, butyroaminectone, and 

cepafungins to suppress pathogen growth [27, 

101]. In the indirect method, endophytic bacteria 

can regulate the host plant's genetic expression, 

affecting the plant’s physiological responses and 

defensive mechanism by inducing systemic 

resistance [99], increasing its resistance to 

phytopathogens. Furthermore, endophytic 

bacteria produce biocidal substances known as 

siderophores such as chelate iron which provides 

enough amount of iron to endophytes and host 

plants but not to pathogens, which restricts the 

growth of pathogens by limiting mycelial growth 

and spore germination [99, 45]. Salicylic acid and 

Jasmonic acid have been reported as 

Siderophores produced by endophytic bacteria. 

These play critical roles in inducing systemic 

resistance of plants that stimulate local and 

systemic defensive responses against pathogens 

attacks [100]. Some endophytes produced 

Gibberellin to enhance the resistance against the 

attack of insects and phytopathogens [88]. 

Endophytic bacteria serve as effective bio-

control agents as they colonize an ecological 

niche similar to phytopathogens [68] and have a 

close relationship with the plant, resulting in 

limiting pathogen entrance into the host cells and 

reliable prevention of vascular diseases in plants 

[90], thereby minimizing pesticide use. 
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Numerous research reported that endophytic 

microorganisms have been shown to control plant 

pathogens, insects, nematodes, and fungal 

pathogens such as the inhibitory effect of B. 

pumilus SE34 on Fusarium oxysporum on roots 

of black pepper [81].  

9.2.3.2. Phytoremediation 

Phytoremediation is the utilization of plants 

and their accompanying microbes to remediate a 

site. Plants and their associated bacteria 

endophytes interact in complex and varied ways, 

which have been extensively researched and 

exploited to promote soil fertility, plant growth, 

and phytoremediation of polluted water and soil 

[131]. Trace elements (TEs) which include 

diverse metals such as arsenic, chromium, 

mercury, cadmium, nickel, zinc, lead, and copper 

are the main inorganic soil and water 

contaminants; which become hazardous to health 

at high quantities. Many efforts have been 

undertaken to develop soil and water remediation 

technologies that employ thermal, or 

physicochemical strategies. The common feature 

of such strategies is their high expense, especially 

when applied across wide areas [133]. Hence, 

phytoremediation which is based on plants and 

their associated bacterial endophytes is an 

environmentally acceptable and cost-effective 

approach but requires long-term supervision 

[134]. Using endophytic bacteria with plant 

growth-promoting activity may help plants adapt 

and develop in contaminated soil [136]. 

According to Shehzadi et al.[137], utilizing 

bacterial endophytes in pollutant-

degrading pathways produces metabolic activities 

that aid in lowering both phytotoxicity and 

evapotranspiration of volatile organic molecules. 

Furthermore, plant-endophyte collaborations 

can also be utilized to purify (ground) water 

polluted with organic substances [135]. Bacterial 

endophytes are more effective at eliminating 

toxins than plants, as plants do not fully break 

down pollutants, leaving hazardous 

decomposition products. Recently, several 

endophytic bacteria were isolated from diverse 

plants, and a number of them displayed pollutant-

degrading and plant growth-promoting properties 

[104]. 

9.3. Nanobiotechnology 

Nanotechnology is an interdisciplinary 

scientific field that involves biology, chemistry, 

physics, and bioengineering to create novel 

molecules termed nanoparticles (NPs) with sizes 

smaller than 100 nm [138]. Nanoparticles have a 

wide range of technical and industrial uses, 

including medicine, agriculture, environmental 

waste treatment, disinfection, cosmetics, 

electronics, energy, and biotechnology [139]. 

Biological approaches for nanoparticle 

production (Nanobiotechnology) have numerous 

benefits over physical and chemical processes, 

including the absence of significant energy 

requirements and the absence of toxic waste, 

making them easy, and cost-effective [139]. 

Currently, metal nanoparticles have significant 

potential for fighting multi-drug resistance. 

Nanoparticles provide numerous advantages over 

traditional antibiotics, including higher stability, 

higher accuracy in infected tissues, more 

solubility, extended antibiotic activity duration, 

greater capacity to penetrate epithelial barriers, 

and reduced risk of adverse effects [140]. 

Utilizing bacterial endophytes in metal 

nanoparticle biosynthesis is an example of 

nanobiotechnology. Endophytic bacteria cause a 

reduction in metallic ions for metal nanoparticle 

production [141]. Nanosilver particles (AgNPs) 

synthesized by Pantoea ananatis exhibited 

antimicrobial activity against multidrug-resistant 

pathogens [89]. Examples of endophytic bacteria-

mediated nanoparticle biosynthesis and their 

biological activities are shown in Table 3. 
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Table 3. Examples of endophytic bacteria-mediated nanoparticle biosynthesis and their biological activities 

Endophytic bacteria Host plant nanoparticles Biological activity References 

Bacillus cereus Garcinia 

xanthochymus 

Ag-NPs Antibacterial 

 

[107] 

Streptomyces laurentii  A. fragrantissima Ag-NPs Antibacterial and 

Anticancer 

[112] 

Actinomycete Marine CuO NPs antibacterial and 

anticancer ( lung 

cancer) 

[111] 

Brevibacillus 

brevis PI-5 

Pulicaria incisa CuO-NPs antifungal and 

anticancer (breast 

cancer cell lines 

(T47D)), larvicidal 

activity 

[110] 

 

Bacillus 

zanthoxyli GBE11 

Ginkgo biloba AgNPs Antibacterial [109] 

Streptomyces 

coelicolor 

Ocimum sanctum MgO Active against 

multidrug-resistant 

microbes 

[132] 

Pseudomonas 

fluorescens 417 

 

Coffea arabica Au Antibacterial [132] 

 

Conclusion and prospects 

With the rise of multi-drug-resistant 

pathogens, as well as the emergence of novel 

viruses and bacteria, there is a significant interest 

in discovering novel sources of bioactive 

compounds with high efficacy, minimal side 

effects, and cheap cost. Nowadays, researchers 

emphasize studying the natural biological 

substances and the processes of extraction of 

these products from the plants, then utilize them 

for the creation of innovative active medications 

with greater safety than the old synthetic 

medications. Endophytic bacteria's unique ability 

to synthesize bioactive compounds, whether 

alone or alongside plants is becoming more 

widely recognized. Understanding how 

endophytes affect plant physiology, growth, 

metabolism, and development, and how they 

utilize the primary and secondary metabolites as 

nutrition and as precursors of new compounds are 

still largely studied. 

Endophytic bacteria are an alternative 

biological tool that is effective and useful in the 

pharmaceutical and medicinal industries. They 

can also be used to promote plant growth and as 

natural biocontrol agents, which makes them a 
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viable option for organic farming. Endophytic 

bacteria can be utilized in Nano biotechnology 

field for the synthesis of novel antimicrobial 

agents to fight multi-drug resistance situations.  
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