Apoptosis in cancer: from pathogenesis to discovery of advanced selective Bcl-2 family inhibitors

Document Type : Review Article

Authors

1 Pharmaceutical Chemistry, Faculty of Pharmacy, ASU, Cairo, Egypt

2 Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt

3 Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo11566, Egypt

4 Pharmaceutical Chemistry Department, Faculty of Pharmacy, El-Nahda University, Beni sweif, Egypt

Abstract

Cancer is a genetic disease characterized by two features: unregulated cell growth and tissue invasion (metastasis). It can be viewed as the result of a succession of genetic changes during which a normal cell is transformed into a malignant one. Evasion of cell death, apoptosis, is one of the essential changes in a cell that cause this malignant transformation. Hence, reduced apoptosis or its resistance plays a vital role in carcinogenesis. The Bcl-2 family of proteins regulates the mitochondrial apoptotic pathway. Disease states arise upon deregulation of the Bcl-2 family of proteins, where cell death is either promoted or evaded; one of the most common tactic cancer cells utilize to promote survival is anti-apoptotic protein overexpression. Specifically, Bcl-2 overexpression has been shown to be a major chemoresistance factor in a number of human cancers, and for this reason, Bcl-2 targeting is a pharmacologic priority in the quest to reactivate cell death for therapeutic benefit in cancer.

Keywords


  1. 1. Robert G, Fenton Dan I, longo. Harrison’s hematology and oncology chapter 24:  cancer cell biology and angiogenesis. 2010. 

    1. Kerr JF, Harmon BV. the incidence of apoptosis: a historical perspective.In  Apoptosis:   cell death. Volume 3. Edited by:  Tomei  ID,  Cope  FO. New York:  Cold Spring Harbor Laboratory Press; 1991; 5-29.

    3. Mohan H. Textbook of pathology. 5 edition. New Delhi:  Jaypee Brothers Medical Publishers. 2010; 21-60.

    4. Merkle CJ. Cellular adaptation, injury, and death. In pathophysiology:  concepts of altered health states. Eight editions. Edited by:  Porth CM, Matfin G. Philadelphia:  Wolters Kluwer/Lippincott Williams and Wilkins. 2009; 94-111.

    5. Abou-Ghali M, Stiban J. regulation of Ceramide Channel Formation and disassembly: Insights on the Initiation of Apoptosis. Saudi Journal of Biological Sciences. 2015. 

    6. Kumar V, Abbas AK, Fausto N, Aster JC. Robins and Cotran:  pathologic basis of disease. 8  edition. Philadelphia:  Saunders Elsevier. 2010; 25-32.

    7. Hengartner  MO. Apoptosis: corralling the corpses. Cell. 2000; 104:325-328.

    8. Vaux D, Silke J. mammalian mitochondrial IAP-binding proteins. Biochem Biophys Res Commun. 2003; 203:449-504.

    9. lavrik IN, Golks A, Krammer PH. Caspases:  pharmacological manipulation of cell death. J  Clin Invest. 2005; 115:2665-2672. 

    10. O’Brien  MA,  Kirby  R. Apoptosis:   disease. J  Vet Emerg Crit Care. 2008; 18:572-585.

    11. Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv. 2000; 74:281-286.

    12. Karp G. Cell and molecular biology:  Concepts and experiments. 5 edition. John New Jersey. Wiley and Sons. 2008; 653-657.

    13. Danial NN, Korsmeyer SJ. Cell death:  critical control points. Cell. 2004; 116(2):205-219.

    14. Kroemer G, Galluzzi I, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007; 87:99-163.

    15. Lacasse  EC,  Mahoney  DJ,  Cheung  HH,  Pichette  S,  Baird  S,  Korneluk  RG. IAP-targeted therapies for cancer. Oncogene. 2008; 27:6252-6275.

    16. Tsujimoto  Y,  finger  IR,  Yunis  J,  Nowell  PC,  Croce  CM. The chromosome breakpoint of neoplastic B the t (14;  18) chromosome translocation. Science 1984; 226:1097-1099.

    17. Reed JC. BCl-2 family proteins:   apoptosis and chemoresistance in haematologic malignancies. Semin Haematol. 1997; 34:9-19.

    18. Ghobrial IM, Witzig TE, Adjei AA. Targeting in cancer therapy. CA  Cancer  J  Clin.  2005; 55:178-194.

    19. Hanahan D, Weinberg RA The hallmarks of cancer. Cell.  2000; 100:57-70.

    20. Rebecca SY. Apoptosis in cancer:  from pathogenesis to treatment. Wong Journal of Experimental  &  Clinical  Cancer  Research. 2011; 30:87.

    21. lavrik I, Golks A, Krammer PH. Death receptor signaling. J  Cell Sci. 2005; 118:265-267.

    22. Levine AJ, Momand J, finlay CA. The p53 tumor suppressor gene. Nature. 1991; 351(6326):453-456.

    23. Bai l, Zhu WG. p53:  structure, function, and therapeutic applications. J  Cancer Mol. 2006; 2:141-153.

    24. Oren M, Rotter V. Introduction:  p53–the first twenty years. Cell Mol Life Sci. 1999; 55:9 11.

    25. Iane DP. p53, guardian of the genome. Nature. 1992; 358:15-16.

    26. Fink  SI,  Cookson  BT. Apoptosis,  pyroptosis, and necrosis:  eukaryotic cells. Infect  Immun.  2005; 73:1907-1916.

    27. Lacasse  EC,  Mahoney  DJ,  Cheung  HH,  Pichette  S,  Baird  S,  Korneluk  RG. IAP-targeted therapies for cancer. Oncogene. 2008; 27:6252-6275.

    28. Wei  Y,  Fan  T,  Yu  M., and apoptosis. Acta  Biochim  Biophys  Sin.  2008; 40:278-288.

    29. Gross A, McDonnell JM, Korsmeyer SJ. BCl-2 family members and the mitochondria in apoptosis. Genes Dev. 1999; 13:1899-1911.

    30. Minn  AJ,  Vélez  P,  Schendel  SI,  Liang  H,  Muchmore  SW,  Fesik  SW,  fill  M,  Thompson  CB. BCl-x (I)   ion channel in synthetic Lipid membranes. Nature. 1997; 385(6614):353-357.

    31. Dawson G, Kluc RM. BCl-2 family-regulated apoptosis in health and disease. Cell Health and Cytoskeleton. 2010; 2:9-22.

    32. Youle RJ, Strasser A. The BCl-2 protein family:  opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008; 9:47-59.

    33. Sattler  M,  Liang  H,  Nettesheim  D,  Meadows  RP,  Harlan  JE,  Eberstadt  M.   BCl-XI-Bak peptide complex:   regulators of apoptosis. Science. 1997; 275 (5302):983-986.

    34. Chen  H-C,  Kanai  M,  Inoue-Yamauchi  A,  Tu  H-C,  Huang  Y,  Ren  D,  Kim  H,  Takeda  S,  Reyna  DE,  Chan  PM. Of cell death regulation by the  BCl-2  family. Nat Cell Biol. 2015; 17:1270-1281.

    35. Luna-Vargas MPA, Chipuk JE. physiological control of BAK,  BAX, and beyond. Trends Cell Biol. 2016; 26:906-917.

    36. Wei  MC,  Zong  WX,  Cheng  EH,  lindsten  T,  Panoutsakopoulou  V,  Ross  AJ,  Roth  KA,  MacGregor  GR,  Thompson  CB,  Korsmeyer  SJ. Proapoptotic  BAX  and  BAK:  a   dysfunction and death. Science.  2001; 292:727-730.

    37. Thomas  P, Andrea l,  Denis  ER,  Adam  Z,  Evripidis  G. Progress in targeting the BCl-2 family of proteins. Current Opinion in chemical biology. 2017; 39:133–142.

    38. Kim  R,  Emi  M,  Matsuura  K, Tanabe  K. Antisense and nonantisense effects of anti-sentence-2   roles of BCl-2   cancer therapy. CancerGene Ther. 2007; 14:1-11.

    39. O’Brien S, Moore JO, Boyd TE. 5-Year  survival or refractory chronic lymphocytic Leukemia in a  randomized,   without oblimersen.  J Clin Oncol. 2009; 27:5208-12.

    40. Vogler  M,  Dinsdale  D, Dyer, and  Cohn  GM. Review:  BCl-2  inhibitors:   with  big cancer therapy. Cell Death and Diff. 2009; 16:360-367.

    41. Nguyen  M,  Marcellus  RC,  Roulston  A,  Watson  M, Serfass l,  Murthy  Madiraju  SR,  Goulet  D,  Viallet  J,  Be´  lec  I,  Billiot  X. Small molecule obatoclax  (GX15-070)  antagonizes  MCl-1 and overcomes MCl-1-mediated resistance to apoptosis. Proc  Nati  Acad  Sci  U  S  A.  2007; 104:19512-19517.

    42. Hwang JJ, Kuruvilla J, Mendelson D. Phase l   studies of obatoclax (GX15-070), a small molecule pan-BCl-2 family antagonist, in patients with advanced solid tumorsorlymphoma. Clin Cancer Res. 2010; 16:  4038-45.

    43. Pascuzzi  I,  Gonen  M,  Gardner  JR. Targeting  BCl-2   with the BH3  mimetic  AT-101 markedly enhances the agents in vitro and in vivo models of B-cell lymphoma. Blood. 2008; 111:5350-eight.

    44. Wang G, Nikolova-Coleska Z, Yang CY. Structure-based designofpotentsmall-moleculeinhibitorsofanti- apoptotic BCl-2proteins. JMedChem. 2006; 49:6139-42.

    45. Oltersdorf T, Elmore SW, Shoemaker AR. An inhibitor of  BCl-2   induces regression of solid tumors. Nature. 2005; 435:677–681. 

    46. Oltersdorf  T,  Elmore  SW,  Shoemaker  AR,  Armstrong  RC,  Augeri  DJ,  Belli  BA,  Bruncko  M  Deckwerth  Tl,  Dinges  J,  Hajduk  PJ,  Joseph  MK,  Kitada  S,  Korsmeyer  SJ,  Kunzer  AR,  ltai  A,  Li  C,  Mitten  MJ,  Nettesheim  DG,  Ng  S,  Nimmer  PM,  O’Connor  JM,  Oleksijew  A,  Petros  AM,  Reed  JC,  Shen  W,  Tahir  SK,  Thompson  CB,  Tomaselli  KJ,  Wang  B,  Wendt  MD,  Zhang  H,  Fesik  SW,  Rosenberg  SH. An inhibitor of  BCl-2   of solid tumors. Nature.  2005; 435:677-681.

    47. Tse C, Shoemaker AR, Adickes J. ABT-263. an orally bioavailable BCl-2 family inhibitor. Cancer Res. 2008; 68:3421–3428. 

    48. Wong. Apoptosis in cancer:  from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research. 2011; 30:87.

    49. Khan KH. Cancer Therapeutics:  Targeting the apoptotic pathway. Crit Rev Oncol/Hematol. 2014.

    50. Bai l,  Chen  J,  McEachern  D, Liu l,  Zhou  H,  Aguilar  A,  Wang  S. BM-1197:  a novel and specific  BCl-2/Bcl-XI Song-lasting tumor regression in vivo. PLoS ONE. 2014; 9:e99404.

    51. Ne´  mat  F,  de  Montrion  C,  Yang  G,  Kraus-Berthier  I,  Carita  G,  Sastre-Garau  X,  Berniard  A,  Vallerand  D,  Geneste  O,  de Pieter l. Targeting  BCl-2/Bcl-XI   patient-derived xenografts. PLoS ONE. 2014; 9:e80836.

    52. The anti-apoptotic BCl-2 and BCl-XI,   treatment of cancer (AZD4320). 250th ACS Annual Meeting. 2015.

    53. Souers AJ, Leverson JD, Boghaert ER. ABT-199, a potent and selective BCl-2 inhibitor, achieves antitumor activity while sparing patients. Nat Med. 2013; 19:202–208. 

    54. Salem  AH,  Agarwal  S,  Dunbar  M. Low and High  Fat Meals on the Pharmacokinetics of Venetoclax,  a selective first-in-Class BCl-2  Inhibitor. J  Clin Pharmacol. 2016.

    55. Casara  P,  Davidson  J,  Cameron  A,  Ie  Toumelin-Braizat  G,  Vogler  M. S55746   novel orally active  BCl-2   potent inhibitor that tumor growth.  Oncotarget, Impact journals. 2018; 9:20075-20088. 

    56. Messene  G,  Czabotar  PE,  Sleebs  BE,  Zobel  K,  Lowes  KN,  Adams  JM,  Baell  JB,  Coleman  PM,  Deshayes  K,  Fairbrother  WJ. Structure-guided design of a selective BCl-X (I) inhibitor. Nat Chem Biol. 2013; 9:390-397.

    57. Tao  Z-F,  Hasvold  I,  Wang  I,  Wang  X,  Petros  AM,  Park  CH,  Boghaert  ER,  Catron  ND,  Chen  J,  Colman  PM. Discovery of a potent and selective  BCl-XI in vivo activity. ACS Med Chem Lett. 2014; 5:1088-1093.

    58. Iverson  JD,  Phillips  DC,  Mitten  MJ,  Boghaert  ER,  Diaz  D,  Tahir  SK,  Belmont  ID,  Nimmer  P,  Xiao  Y,  Ma  XM. exploiting selective BCl-2 to dissect cell survival dependencies and cancer therapy. Sci Transl Med. 2015; 7:279ra40.

    59. Lee  EF,  Czabotar  PE,  Yang  H,  Sleebs  BE,  Messene  G,  Colman  PM,  Smith  BJ,  Fairlie  WD. conformational changes in  BCl-2 pro-survivall their capacity to bind ligands. J  Biol Chem. 2009; 284:30508-30517. 

      60. fire E, Gulla´ SV, Grant RA, Keating AE. Mcl-1-Bim   minor structural changes. Protein Sci. 2010; 19:507-519. 

    61. Doi  K,  li  R,  Sung  S-S,  Wu  H,  Liu  Y,  Manieri  W,  Krishnegowda  G,  Awwad  A,  Dewey  A,  Liu  X. Discovery of marinopyrrole  A  (navitoclax) as a selective  Mcl-1 antagonist that overcomes  ABT-737 and targeting Mcl-1 for proteasomal degradation. J  Biol  Chem.  2012; 287:10224-10235.

    62. AbiWord  F,  Xiao  C,  Liu  M,  Azmi  AS,  Aboukameel  A,  Mady  ASA,  Gulappa  T,  Cierpicki  T,  Owens  S,  Zhang  T. An   inhibitor of mcl-1   and in vivo. Mol Cancer Ther. 2014; 13:565-575.

    63. Leverson  JD,  Zhang  H,  Chen  J,  Tahir  SK,  Phillips  DC,  Xue  J,  Nimmer  P,  Jin  S,  Smith  M,  Xiao  Y. Selective small-molecule MCl-1   on-target cancer cell in combination with  ABT-263  (navitoclax). Cell Death Dis. 2015; 6:e1590.

    64. Lee  T,  Bian  Z,  Zhao  B,  Hogdal  IJ,  Sensintaffar  JI,  Goodwin  CM,  Belmar  J,  Shaw  S,  Tarr  JC,  Veerasamy  N. biological characterization of potent myeloid cell  leukemia-1  inhibitors. FEBS Lett. 2017; 591:240-251.

    65. Kotschy  A,  Szlavik  Z,  Murray  J,  Davidson  J,  Maragno  Al,  le  Toumelin-Braizat  G,  Chanrion  M,  Kelly  Gl,  Gong  J-N,  Moujalled  DM. The  MCl1  inhibitor  S63845 is tolerable and   diverse cancer models. Nature. 2016; 538:477-482.

    1. 66.   characterization of AMG  176:  a  first-in-class  Mcl-1 inhibitor in clinical multiple myeloma. AACR Annual Meeting 2017. 

    67. Berger  S,  Procko  E,  Margineantu  D,  Lee  EF,  Shen  BW,  Zetter  A,  Silva  D-A,  Chawla  K,  Herold  MJ,  Garnier  J-M.   high specificity   the roles of  BCl2 in cancer. Elife. 2016; 5.

    68. Han  B,  Park  D,  li  R,  Xie  M,  Owonikoko  TK,  Zhang  G,  Sica  Gl,  Ding  C,  Zhou  J,  Magis  AT. Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell. 2015; 27:852- 863.

    69. Song  T,  Wang  Z,  Ji  F,  Feng  Y,  Fan  Y,  Chai  G,  Li  X,  Li  Z,  Zhang  Z. Deactivation  of  Mcl-1  by  dual-function  small-molecule  inhibitors  targeting  the  BCl-2  homology  3  domain  and  facilitating  Mcl-1  ubiquitination. Angew Chem Int Ed Engl. 2016; 55:14250-14256.

    70. Lee  S,  Wales  TE,  Escudero  S,  Cohen  DT,  Zuccarelli  J,  Gallagher  CG,  Cohen  NA,  Huhn  AJ,  Bird  GH,  Engen  JR. Allosteric  inhibition  of  antiapoptotic  MCl-1. Nat Struct Mol Biol. 2016; 23:600-607.

    71. Akc¸  ay  G,  Belmonte  MA,  Aquila  B,  Chuaqui  C,  Hird  AW,  lamb  Ml,  Rawlins  PB,  Su  N,  Tentarelli  S,  Grimster  NP. Inhibition  of  Mcl-1  through  covalent  modification  of  a  noncatalytic  lysine  side  chain. Nat Chem Biol. 2016; 12:931-936.